Surgery – Means for introducing or removing material from body for... – With means for cutting – scarifying – or vibrating tissue
Reexamination Certificate
1998-11-09
2002-11-12
Mendez, Manuel (Department: 3763)
Surgery
Means for introducing or removing material from body for...
With means for cutting, scarifying, or vibrating tissue
Reexamination Certificate
active
06478765
ABSTRACT:
The present invention is generally related to the use of ultrasonic energy and is more particularly directed to the use of ultrasound with ultrasound imaging agents, alone or in combination with thrombolytic agents, to dissolve thrombosis in fistula.
It is known that ultrasound imaging can be used to locate intravascular thrombi and it has been demonstrated that the utilization of ultrasonic waves can improve the diffusion and penetration of medicinal fluids or the like into the vascular system (see U.S. Pat. No. 5,197,946 to Tachibana). Tachibana teaches that in order to effectively enhance or improve the diffusion and penetration or a medicinal fluid, the oscillating element must be disposed at the point of injection of the medicinal fluid.
This is to be contrasted, according to Tachibana, with prior art techniques which utilize ultrasonic waves and a catheter wire for diffusion and penetration of medicinal fluids. In this arrangement the ultrasonic oscillating element is connected to the catheter site outside the body and far from a radiating end of the catheter wire. This results in a significant reduction in efficient coupling of the ultrasound due to the damping of ultrasonic energy in the course of transmission down the catheter wire.
Other disadvantages in the use of a transmission wire to deliver ultrasonic energy to a thrombosis is transmission wire stiffness. Further, as the transmission wire diameter is reduced to lower the stiffness thereof, it is more difficult to deliver sufficient energy for effective removal of the thrombosis. To overcome these disadvantages, miniature ultrasonic ablation tools have been developed, utilizing ultrasonic transducers sized for arterial insertion. While these devices overcome the transmission wire difficulties, their small size severely limits the amount of ultrasonic energy available for direct mechanical action for fragmenting plaque and thrombosis and/or energy for improving diffusion and penetration of medicinal fluids as described in U.S. Pat. No. 5,197,946.
Ultrasonic apparatus have also been utilized to assist in the delivery of medicaments in specific areas of a vein. For example, U.S. Pat. No. 5,040,537 to Katakura teaches the use of injecting numerous fine capsules, with an agent being packed therein, into a patient's body and thereafter applying a shock wave to provide dominant positive pressure from outside the body to rupture the capsules dispersed in the body.
Thus, ultrasonic energy in the form of a pulsated shock wave is generated exterior to the body and imaged to selectively burst agent-containing capsules in order to selectively release the agent into the blood.
The present invention is directed to the discovery that ultrasound itself, or in combination with a diagnostic medium, particularly echo contrast agents containing microbubbles, utilized in conjunction with ultrasound, provides a safe and effective method for dissolving fistula thrombi with and without the use of thrombolytic drugs.
This is important, since long-term vascular access is required in all hemodialysis patients in order to achieve blood flow rate sufficient for removal of metabolic by-products such as, for example, urea, creatinine, and other nitrogenous compounds, along with excess plasma water.
Generally speaking, there are two principal types of permanent vascular access for hemodialysis, namely, endogenous arteriovenous fistula, commonly known as a shunt, and a synthetic polytetrafluoroethylene (PTFE) arteriovenous graft, which is preferably placed in a distal upper extremity.
The arteriovenous fistula is preferred because of fewer complications arising with long-term use. However, a large number of patients who require a long-term hemodialysis do not have blood vessels suitable for the creation of an autogenous fistula.
Unfortunately, an inescapable relationship exists between the use of a PTFE graft as a dialysis access and thrombosis.
Stenosis affecting the graft, its anastomoses, and draining veins, i.e., venous stenosis, is the primary cause of thrombosis and this occurs with high frequency.
A common therapy in dialysis units for a thrombosis graft is surgery. Surgery is effective in restoring flow in the graft, however, it has a number of disadvantages.
First, surgery is, by nature, invasive, which results in considerable blood loss and may require a general anesthesia. Common pain and discomfort immediately occurs and for several days afterwards, and frequently requires hospitalization. Naturally, there is also a significant risk of infection.
This, in turn, may cause delayed or missed dialysis treatments and consequently requires central venous dialysis catheters.
Ultimately, more extensive surgery by way of a replacement graft ultimately results in the loss of potential access sites. Since this problem is recurrent, continued graft replacement eventually results in the elimination of most, if not all, access sites in a patient.
Consequently, there is need for a rapid, safe, effective and minimally evasive out-patient procedure for restoration of graft function, which would allow the patient to be quickly returned to the dialysis unit for timely effective treatment. The present invention is directed to a method and apparatus suited to fill that need.
SUMMARY OF THE INVENTION
A method in accordance with the present invention utilizes the discovery of the effectiveness of applying a combination of ultrasonic energy and certain agents, including ultrasound imaging agents, to dissolve arterial thrombi. Particularly, the present invention includes a method for substantially reducing and removing a thrombosis disposed within a body vessel, particularly, a fistula; by radiating an ultrasound imaging agent, particularly a microbubble containing echo contrast agent, and/or a thrombolytic agent, proximate the thrombosis shunt or PTFE graft, with ultrasound. The ultrasound may be applied transcutaneously by means of an external generator and transducer. Importantly, the introduction of a thrombolytic agent proximate the thrombosis; further enhances the clot dissolution capability of a method in accordance with the present invention. This step is carried out during thrombolytic action by the thrombolytic agent on the thrombosis disposed within the graft.
This method is clearly distinguished from prior art techniques such as taught by Katakura in U.S. Pat. No. 5,040,537, in which ultrasound generated exterior to the body vessel is used only to rupture capsules containing an active agent. Clearly, the prior art is specifically directed to the release of an active agent within a vessel, whereas the present invention is directed to introduction of a microbubble media that does not contain an active agent, in order to enhance the effect of ultrasound in removal of thrombosis and increase the effect of a thrombolytic agent during its activity in dissolving, or splitting up, a thrombus. The present invention involves a phenomena of long and short range ultrasound enhancement of inherent drug activity.
In accordance with one embodiment of the present invention, a selected dose of a thrombolytic agent or an echo contrast agent is injected into an occluded vessel, and ultrasonic energy is radiated from an external source into the echo contrast agent transcutaneously. It has been found that at certain frequencies of ultrasonic radiation, the thrombosis is substantially dissolved using this combination of steps. This embodiment of the present invention is based on the discovery that the use of echo contrast agents, particularly microbubble medium, substantially increases the effectiveness of ultrasound therapy in removing cardiovascular blockages. The echo contrast agent may be used alone or in combination with a thrombolytic agent.
By way of specific example only, the echo contrast agent may be a perfluorocarbon, such as, for example, a dodecafluropentane colloid dispersion, and the ultrasound may be introduced at a frequency of between about 24 kHz and about 53 kHz.
One embodiment of the present invention includes the step of introducing an echo
Carter Robert E.
Siegel Robert J.
Hackler Walter A.
Mendez Manuel
Thompson Michael M
Transon LLC
LandOfFree
Apparatus for removing thrombosis does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus for removing thrombosis, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for removing thrombosis will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2967737