Apparatus for removing moisture from fluids comprising acid...

Gas separation: processes – Solid sorption – Inorganic gas or liquid particle sorbed

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C095S049000, C095S902000, C096S108000, C252S372000

Reexamination Certificate

active

06752852

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention is generally related to the field of moisture removal from gases and liquids. More specifically, the invention relates to apparatus adapted to reduce or remove moisture from gas-phase and liquid-phase acid gases, and methods of using same.
2. Related Art
Moisture is known to react with so-called “acid gases”, such as hydrogen sulfide, carbonylsulfide, carbondlsulfide and mercaptans (mercaptans are also referred to as thiols) to form a complex compound. (The term “acid gas” is used herein to denote either gas phase, liquid phase, or mixture of gas and liquid phases, unless the phase is specifically mentioned.)
One problem presents itself: if one is interested in producing acid gas standard compositions, in other words acid gases having a known concentration of one of these gases in a matrix or carrier fluid, then one must consider how to reduce or remove the moisture. Gas standards may have to have, and preferably do have, a long shelf life, since the standard acid gas may not be required immediately after production. A source of acid gas may contain a considerable amount of moisture. Therefore, the reduction or removal of moisture from the acid gas is of primary importance if the stability of the acid gas in the standard gas is to be maintained.
Grossman et al. (U.S. Pat. No. 4,082,834) describes alloys, such as alloys of nickel, titanium, and zirconium, that react with water and reactive gases (such as hydrogen, hydrogen-containing compounds such as hydrocarbons, carbon monoxide, carbon dioxide, oxygen, and nitrogen) at temperatures ranging from about 200° C. to about 650° C. While the patent does not discuss acid gases, it is apparent that hydrogen sulfide, carbonyl sulfide, and mercaptans are hydrogen-containing compounds, so that there would not be any expected benefits using these alloys to remove moisture from these acid gases. While carbondisulfide does not contain hydrogen, and therefore there could be some moisture reduction from a composition comprising carbondisulfide and moisture using these alloys, the high temperature is prohibitive for commercial use.
Tamhankar et al. (U.S. Pat No. 4,713,224) describes a one-step process for removing minute quantities of impurities from inert gases, where the impurities are selected from the group consisting of carbon monoxide, carbon dioxide, oxygen, hydrogen, water and mixture thereof. The process comprises contacting the gas with a particulate material comprised of nickel in an amount of at least about 5% by weight as elemental nickel and having a large surface area, from about 100 to about 200 m
2
/g. There is no disclosure of removal of moisture from acid gases.
Tom et al (U.S. Pat Nos. 4,853,148 and 4,925,646) discloses processes and compositions for drying of gaseous hydrogen halides of the formula HX, where X is selected from the group consisting of bromine, chlorine, fluorine, and iodine. The patent describes the use of, for example, an organometallic compound such as an alkylmagnesium compound, on a support. The halide is substituted for the alkyl functional group. Suitable supports are, alumina, silica, and aluminosilicates (natural or synthetic). However, there is no description or suggestion of reducing or removing moisture from sulfur-containing compounds. Alvarez, Jr. et al. (U.S. Pat. No. 5,910,292) describes a process and apparatus for removal of water from corrosive halogen gases, using a high silica zeolite, preferably high silica mordenite. The patent describes removing moisture down to less than or equal to 100 ppb water concentration in halogen gases, particularly chlorine- or bromine-containing gases. U.S. Pat. No 6,183,539 discloses utilizing high sodium, low silica faujasite particles for the adsorption of carbon dioxide and water vapor from gas streams. The disclosed types of gas streams in which this type of high sodium, low silica faujasite crystals can be utilized includes air, nitrogen, hydrogen, natural gas, individual hydrocarbons and monomers, such as ethylene, propylene, 1.3 butadiene, isoprene and other such gas systems. There is no mention of sulfur-containing acid gas purification using the faujasites.
U.S. Pat. No. 4,358,627 discloses use of “acid resistant” molecular sieves, such as that known under the trade designation “AW300”, for reducing the chloride concentration in chlorinated liquid hydrocarbons that contain an ethylenically unsaturated chlorinated hydrocarbon, water and hydrogen chloride. The method includes providing certain nitrogen-containing compounds in the system and contacting the system with the molecular sieve. There is no disclosure or suggestion, however, of removal or reduction of moisture from gas phase compositions, or removal or reduction of moisture from liquids comprising acid gases.
Given the problem of moisture reacting with sulfur-containing acid gases, it would be advantageous if apparatus and methods could be provided which reduce or overcomes the problem.
SUMMARY OF THE INVENTION
In accordance with the present invention, certain acid gas resistant molecular sieve compositions are employed to reduce or remove moisture from fluid compositions comprising a sulfur-containing compound. As used herein the term “remove” means that the water content of the final composition comprising the sulfur-containing compound will be equal to or less than 100 parts per billion (ppb), more preferably less than 10 ppb, and more preferably less than 1 ppb. As used herein the term “reduce” means that the moisture concentration of the final composition comprising the sulfur-containing compound will be no more than 0.1 times the starting fluid composition water concentration, preferably no more than 0.01 times, and more preferably no more than 0.001 times the starting moisture concentration. Presently, the detection limit for moisture is about 4 ppm in sulfur-containing fluids. Compositions are made to 4 ppm concentration, then diluted to the desired reduced moisture concentration. As used herein the term “sulfur-containing compound” includes carbondisulfide, carbonylsulfide, and compounds within formula (I):
Y—S—X  (I)
wherein S is sulfur,
X and Y are the same or different and are independently selected from the group consisting of hydrogen, alkyl, aryl oxygen, and alcohol.
Examples of preferred sulfur-containing compounds within formula (I) include hydrogen sulfide, sulfur dioxide, methylthiol, ethylthiol, n-propylthiol, i-propylthiol, benzylthiol, and the like.
A first aspect of the invention relates to an apparatus comprising:
a) a container having an internal space;
b) an acid gas-resistant molecular sieve positioned within at least a portion of the internal space; and
c) means for maintaining said molecular sieve within the container when a fluid comprising a sulfur-containing compound is caused to flow through the molecular sieve.
Preferred apparatus are those wherein the acid gas-resistant molecular sieve is selected from the group consisting of molecular sieves having an effective pore size ranging from about 1 Angstrom up to about 10 Angstroms, more preferably ranging from about 3 to about 8 Angstroms. Preferred are the molecular sieves known under the trade designations AW300 and AW500, particularly herein the molecular sieve is AW300 The molecular sieve is preferably positioned in the container so that substantially all of the sulfur-containing compound passes through the molecular sieve. Also preferred are apparatus wherein molecular sieve completely fills the internal space, and the means for maintaining the molecular sieve in the container is a material that is substantially inert to the sulfur-containing compound. Preferably, the means for maintaining the molecular sieve in the container is the molecular sieve material itself contacting an inner surface of the internal space. Also preferred are apparatus comprising an effluent conduit removably attached to the container, the effluent conduit adapted to route at least a portion of a moisture-depleted gas stream to a diode laser moisture meas

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for removing moisture from fluids comprising acid... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for removing moisture from fluids comprising acid..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for removing moisture from fluids comprising acid... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3293648

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.