Material or article handling – Apparatus for charging a load holding or supporting element... – Load holding or supporting element including gripping means
Reexamination Certificate
1999-05-12
2001-01-23
Underwood, Donald W. (Department: 3652)
Material or article handling
Apparatus for charging a load holding or supporting element...
Load holding or supporting element including gripping means
C414S752100, C901S008000
Reexamination Certificate
active
06176669
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention generally relates to apparatus for removing and transporting articles from molds. More specifically, the present invention relates to such apparatus that is very well suited for carrying the articles, in a very short period of time, away from the molds and depositing the articles for further processing in a high speed, automated production system.
2. Description of the Prior Art
Recently, attention has been directed toward forming contact lenses in an automated molding system. In such a system, each lens is formed by sandwiching a monomer between front and back mold sections. The monomer is polymerized of form a lens, which is then removed from the mold sections, further treated and then packaged for consumer use.
The mold sections used in the above-outlined process may themselves be formed in injection molding or compression molding processes. These mold sections may be made from the family of thermoplastics, for example polystyrene, which is an excellent material for making these mold sections. Polystyrene does not chemically react with the hydrophilic material used to make the contact lens, therefore, very high quality contact lenses may be formed in polystyrene molds. In addition, polystyrene is widely available and relatively inexpensive. Because of the ease and low cost with which polystyrene mold sections may be made and then used to mold contact lenses, each pair of polystyrene mold sections typically is used to mold only one contact lens and is then disposed of.
In the above-discussed automated contact lens production system, it is desirable to eliminate or to minimize any exposure of the hydrophilic monomer to oxygen. Correspondingly, it is desirable to eliminate or minimize the exposure of the lens mold sections to oxygen. Therefore, when polystyrene mold sections are made and then used in the above-discussed manner, it is desirable to transfer these mold sections quickly from the mold in which they are made, to a low oxygen (preferably nitrogen) environment. It is difficult to achieve the desired transfer speed with conventional robot assemblies or controls because presently available robots do not move fast enough and precise enough to get in and out of the mold with the desired speed. In particular, if these robots are moved with the necessary speed, they tend to waffle and shake undesirably as they come to a sudden stop, and the movements of the robot are not sufficiently precise. If the robots are slowed down to move more precisely, the robots no longer have the desired speed.
Also, in the above-mentioned automated contact lens production system, the contact lens mold sections may not be fully solidified when they are ejected from the mold in which they are made. It is, therefore, important that any robot or apparatus which is used to carry the lens mold sections away from that mold not interfere with the desired optical qualities of the contact lens mold sections. In particular, it is important that any such robot or apparatus absorb the energy of the lens mold sections as they are transferred to that robot or apparatus without altering the shape, form or dimensions of the lens mold sections. That robot or apparatus must, likewise, be able to carry the lens mold sections in a manner that permits those lens mold sections to cool and completely harden in the desired manner.
In addition, in order to maximize the optical quality of the contact lenses, it is preferred that the optical surfaces of the polystyrene mold sections—that is, the surfaces of those mold sections that touch or lie against the hydrophilic monomer as the lens preform is being molded—not be engaged or touched by any mechanical handling equipment, as the mold sections are transported and positioned in the lens molding system.
SUMMARY OF THE INVENTION
An object of this invention is to provide an improved apparatus for removing articles from molds.
Another object of this invention is to remove articles, which may not be completely hardened, from a mold and to carry those articles away from that mold without causing undue plastic deformations of the articles.
Another object of the present invention is to provide a high speed apparatus for removing fragile articles from a mold in which those articles are made, and then transporting those articles to and depositing those articles in a high speed, automated manufacturing system.
A further object of this invention is to transport articles made from the family of thermoplastics, such as polystyrene, from a mold in which those articles are made, and into a low oxygen environment of an automated contact lens molding system, in less than 12 seconds.
Another object of the present invention is to remove a plurality of discrete molded articles from a mold with the molded articles arranged in a matrix array, and to selectively either preserve that matrix array during subsequent handling of the molded articles, or reorient the matrix and the relative spacing of the articles therein according to a second predetermined matrix.
These and other objectives are attained with an apparatus for removing and transporting articles from a mold, which apparatus generally comprises first, second, and third robots or material handling assemblies. The first assembly removes the articles from the mold at the first location and transports the articles to a second location, the second assembly receives the articles from the first assembly at that second location and transports the articles to a third location, and the third assembly receives the articles from the second assembly and transports the articles to a fourth location. These locations may be selected from an infinite set of specific locations; and these first, second, third, and fourth locations may change from time to time and from application to application.
An alternate embodiment of the present invention further comprises a first intermediate assembly, disposed between the first and second assemblies, in which embodiment the articles are transported from the first assembly to the first intermediate assembly, and said intermediate assembly transports the articles to the second assembly.
Still another embodiment of the present invention further comprises a second assembly which changes the relative position of the articles disposed therein while transporting same from the second location to the third location, such as moving the articles closer together along one axis and into a denser packed array. This embodiment further comprises a third assembly which alters the order of the matrix of articles.
In each embodiment it is preferable that the first material handling assembly include a receiving means for retrieving and transporting articles from the mold to the second location. In several embodiments it is preferable that the receiving means be a hand having fingers to receive the articles from the mold and to hold the articles. In other embodiments the first assembly comprises a vacuum plate having recesses therein for receiving and securably holding the articles during translation. With respect to all of the embodiments, the receiving means is mounted to a support subassembly which, during operation, reciprocates along an axis, whereby its distal end moves into and out of a proximal position with respect to the locus of mold section fabrication. The receiving means is mounted on the support subassembly in a manner which permits sliding motion along the same axis of reciprocation so that it may reciprocate along the support subassembly from one end to the distal end. It is understood that the sliding action of the receiving means, relative to the support subassembly, may be actuated by a motive driver of either the receiving means or the support subassembly. The receiving means may, thereby, reciprocate between the locus of mold section fabrication and the second location in accordance with the proper selection of reciprocation rates of the receiving means and the support subassembly.
In addition, the first material handling assembly further compris
Ansell Scott Frederick
Beaton Stephen Robert
Dagobert Henri Armand
Lust Victor
Parnell, Sr. Phillip King
Johnson & Johnson Vision Care Inc.
Underwood Donald W.
LandOfFree
Apparatus for removing and transporting articles from molds does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus for removing and transporting articles from molds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for removing and transporting articles from molds will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2535699