Apparatus for quantitative analysis of a nucleic acid...

Chemistry: molecular biology and microbiology – Apparatus

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S006120, C435S091200, C536S023100, C536S024300

Reexamination Certificate

active

06713297

ABSTRACT:

COPYRIGHT AUTHORIZATION
A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by any one of the patent disclosure as it appears in the U.S. Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.
COMPUTER PROGRAM LISTING APPENDIX
The Computer Program Listing Appendix written in file AppA.TXT, 61,440 bytes, created on Jul. 11, 2003 on duplicate copies of compact disc, i.e., “Copy 1 of 2” and “Copy 2 of 2”, for application Ser. No.: 09/808,674, McMillan et al., APPARATUS FOR QUANTITATIVE ANALYSIS OF A NUCLEIC ACID AMPLIFICATION REACTION, is hereby incorporated by reference.
TECHNICAL FIELD OF THE INVENTION
This invention relates to an apparatus for quantitative analysis of a nucleic acid amplification reaction.
BACKGROUND OF THE INVENTION
Quantitative nucleic sequence analysis plays an increasingly important role in the fields of biological and medical research. For example, quantitative gene analysis has been used to determine the genome quantity of a particular gene, as in the case of the human HER-2 oncogene, which is amplified in approximately 30% of human breast cancers. Gene and genome quantitation have also been used in determining and monitoring the levels of human immunodeficiency virus (HIV) in a patient throughout the different phases of the HIV infection and disease. It has been suggested that higher levels of circulating HIV and failure to effectively control virus replication after infection may be associated with a negative disease prognosis. Accordingly, an accurate determination of nucleic acid levels early in an infection may serve as a useful tool in diagnosing illness, while the ability to correctly monitor the changing levels of viral nucleic acid in one patient throughout the course of an illness may provide clinicians with critical information regarding the effectiveness of treatment and progression of disease.
Several methods have been described for the quantitative analysis of nucleic acid sequences. The polymerase chain reaction (PCR) and reverse-transcriptase PCR (RT-PCR) permit the analysis of small starting quantities of nucleic acid (e.g., as little as one cell equivalent). Early methods for quantitation involved measuring PCR product at the end of temperature thermal cycling and relating this level to the starting DNA concentration. Unfortunately, the absolute amount of product generated does not always bear a consistent relationship to the amount of target sequence present at the initiation of the reaction, particularly for clinical samples. Such an endpoint analysis reveals the presence or absence of starting nucleic acid, but generally does not provide an accurate measure of the number of DNA targets. Both the kinetics and efficiency of amplification of a target sequence are dependent on the starting quantity of that sequence, and on the sequence match of the primers and target template, and may also be affected by inhibitors present in the sample. Consequently, endpoint measurements have very poor reproducibility.
Another method, quantitative competitive PCR (QC-PCR), has been developed and used widely for PCR quantitation. QC-PCR relies on the inclusion of a known amount of an internal control competitor in each reaction mixture. To obtain relative quantitation, the unknown target PCR product is compared with the known competitor PCR product, usually via gel electrophoresis. The relative amount of target-specific and competitor DNA is measured, and this ratio is used to calculate the starting number of target templates. The larger the ratio of target specific product to competitor specific product, the higher the starting DNA concentration. Success of a QC-PCR assay relies on the development of an internal control that amplifies with the same efficiency as the target molecule. However, the design of the competitor and the validation of amplification efficiencies require much effort. In the QC-PCR method of RNA quantitation, a competitive RNA template matched to the target sequence of interest, but different from it by virtue of an introduced internal deletion, is used in a competitive titration of the reverse transcription and PCR steps, providing stringent internal control. Increasing amounts of known copy numbers of competitive template are added to replication portions of the test sample, and quantitation is based on determination of the relative (not absolute) amounts of the differently sized amplified products derived from the wild-type and competitive templates, after electrophoretic separation.
In addition to requiring time-consuming and burdensome downstream processing such as hybridization or gel electrophoresis, these assays have limited sensitivity to a range of target nucleic acid concentrations. For example, in competitor assays, the sensitivity to template concentration differences may be compromised when either the target or added competitor DNA is greatly in excess of the other. The dynamic range of the assays that measure the amount of end product can also be limited in that the chosen number of cycles of some reactions may have reached a plateau level of product prior to other reactions. Differences in starting template levels in these reactions may therefore not be well reflected. Furthermore, small differences in the measured amount of product may result in widely varying estimates of the starting template concentration, leading to inaccuracies due to variable reaction conditions, variations in sampling, or the presence of inhibitors.
To reduce the amount of post-amplification analysis required to determine a starting nucleic acid quantity in a sample, additional methods have been developed to measure nucleic acid amplification in real-time. These methods generally take advantage of fluorescent labels (e.g., fluorescent dyes) that indicate the amount of nucleic acid being amplified, and utilize the relationship between the number of cycles required to achieve a chosen level of fluorescence signal and the concentration of amplifiable targets present at the initiation of the PCR process. For example, European Patent Application No. 94112728 (Publication number EP/0640828) describes a quantitative assay for an amplifiable nucleic acid target sequence which correlates the number of thermal cycles required to reach a certain concentration of target sequence to the amount of target DNA present at the beginning of the PCR process. In this assay system, a set of reaction mixtures are prepared for amplification, with one preparation including an unknown concentration of target sequence in a test sample and others containing known concentrations (standards) of the sequence.
The reaction mixtures also contain a fluorescent dye that fluoresces when bound to double-stranded DNA. The reaction mixtures are thermally cycled in separate reaction vessels for a number of cycles to achieve a sufficient amplification of the targets. The fluorescence emitted from the reaction mixtures is monitored in real-time as the amplification reactions occur, and the number of cycles necessary for each reaction mixture to fluoresce to an arbitrary cutoff level (arbitrary fluorescent value, or AFV) is determined. The AFV is chosen to be in a region of the amplification curves that is parallel among the different standards (e.g., from 0.1 to 0.5 times the maximum fluorescence value obtained by the standard using the highest initial known target nucleic acid concentration). The number of cycles necessary for each of the standards to reach the AFV is determined, and a regression line is fitted to the data that relates the initial target nucleic acid amount to the number of cycles (i.e., the threshold cycle number) needed to reach the AFV. To determine the unknown starting quantity of the target nucleic acid sequence in the sample, the number of cycles needed to reach the AFV is determined for the sample. This threshold cycle number (which can be fractional) is entered into the equation

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for quantitative analysis of a nucleic acid... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for quantitative analysis of a nucleic acid..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for quantitative analysis of a nucleic acid... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3280508

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.