Apparatus for producing a flux of charge carriers

Electric lamp and discharge devices – Electrode and shield structures – Point source cathodes

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S306000, C313S309000

Reexamination Certificate

active

06771012

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to apparatus for producing a flux of charge carriers.
BACKGROUND OF THE INVENTION
Apparatus for producing a flux of charge carriers have a variety of uses in many different applications. They may be put to use in displays for consumer electronics, in imaging and diagnostic systems used in research and development applications, in switching and amplifying circuits in sensors and in lithography systems for manufacturing.
In the field of imaging and lithography, apparatus for producing a flux of charge carriers may be used as proximity probes as well as to generate electron beams.
One type of proximal probe is a scanning tunnelling microscope (STM).
A STM comprises a tip that is scanned over the surface of a specimen. Electrons are emitted from the tip and tunnel into the specimen. The rate of tunnelling is highly sensitive to the separation of the tip and specimen and the measured current, together with the position of the tip, may be used to build an image of the specimen.
Although STM imaging has very high resolution, it has several disadvantages. For example, the tip is mechanically, rather than electrically, scanned across the specimen, thus reducing its raster speed compared with electron beam systems. Furthermore, image information may only be obtained from primary electrons, in this case, electrons tunnelling between the tip and the specimen. This may be compared with other electron imaging systems in which image information may also be obtained from secondary electrons that are generated when sufficiently energetic primary electrons strike the specimen. Another disadvantage is that the specimen must be arranged a few nanometers from the tip of the STM for electron tunnelling to occur. This is difficult to achieve and attempts to position the tip often result in the tip crashing into the specimen.
An example of using an STM in lithography is given in “Hybrid atomic force/scanning tunnelling lithography” by K. Wilder, H. T. Soh, A. Atalar and C. F. Quate, Journal of Vacuum Science and Technology, volume B15, pp 1811-1817 (1997).
Another type of apparatus for producing a flux of charge carriers and which may be used for imaging and lithography is microcolumn electron beam system. A microcolumn is a miniaturised version of a conventional electron beam system and an example of a microcolumn is given in “Experimental evaluation of a 20×20 mm footprint microcolumn” by E. Kratschmer, H. S. Kim, M. G. R. Thomson, K. Y. Lee, S. A. Rishton, M. L. Yu, S. Zolgharnain, B. W. Hussey and T. H. P. Chang, Journal of Vacuum Science and Technology, volume B14, pp 3792-3796 (1996).
A microcolumn comprises a field emitter, a beam-forming source lens, scanning electrodes and a beam focussing objective lens. The electrode and lenses are arranged around the axis of the column only a few millimeters long. The microcolumn operates with beam voltages of the order of 100-1000 volts.
One advantage of a microcolumn over larger electron beam systems is that lens aberration is reduced. Furthermore, an array of microcolumns separated from one another by a few millimeters may be used in parallel to expose the surface of a wafer. However, microcolumns have several disadvantages. For example, a microcolumn operates under high vacuum conditions, requiring the sample to be kept in a vacuum. This prohibits imaging of a sample in air, which would be advantageous in biological applications. Furthermore, microcolumns are generally complex and expensive to manufacture. In addition, the minimum beam voltage that can be used is limited by space charge, where electrons within the beam repel each other and cause the beam to broaden. A broader beam results in loss of resolution for lithography and imaging.
Electron beams can also be used to determine the composition of sample. For example, conventional scanning electron microscopes (SEMs) may be used to perform energy dispersive X-ray (EDX) spectroscopy and wave dispersive spectroscopy (WDS). However, the instruments used for these types of spectroscopy are cumbersome and require keeping in a vacuum. This prevents analysis of large samples or specimens that can only be analysed in air.
Apparatus for producing a flux of charge carriers may be used in flat panel displays. One type of device is a field emitting display device used in flat panel displays. An example of such a device may be found in U.S. Pat. No. 5,955,850 and comprises an array of field emitters, each comprising a conical cathode and an extractor electrode, and a common anode. The device may be fabricated using standard microelectronic processing techniques on a common substrate. However, the device has several disadvantages. The space between the cathode and the anode must be evacuated and the operative voltage is in the region of 1000's of volts.
Recently, a field emission device has been developed that has a much reduced operating voltage. The device is described in “Nanoscale field emission structures for ultra-low operation at atmospheric pressure” by A. A. G. Driskill-Smith, D. G. Hasko and H. Ahmed, Applied Physics Letters, volume 71, pp 3159-3161 (1997). The device comprises an emitter having a tip radius of about one nanometer and a closely configured extractor electrode. This laboratory experimental device allows field emission to occur at very low voltages and the emitted electrons to travel ballistically from the emitter tip to the extractor electrode even under atmospheric conditions.
This device has been modified to produce a nanoscale electron tube and is described in “The “nanotriode”: A nanoscale field-emission tube” by A. A. G. Driskill-Smith, D. G. Hasko and H. Ahmed, Applied Physics Letters, volume 75, pp 2845-2847 (1999). The device comprises a nanometer-scale chamber comprising an emitter and a closely configured gate electrode, sealed under vacuum by an integrated anode. One of the advantages of the triode is that it has a low operating voltage, while the gate electrode may be used to control the anode current.
However, such a triode is not suitable for generating an electron beam outside of the device because the structure is sealed.
The present invention seeks to provide an improved apparatus for producing a flux of charge carriers.
SUMMARY OF THE INVENTION
According to the present invention there is provided apparatus for producing a flux of charge carriers comprising a source which comprises an emitter having a nanometer scale tip radius on a common substrate with an extractor arranged no more than 50 nm from the emitter to extract charge carriers therefrom and a specimen adjacent the source, to receive a flux of charge carriers from the source.
The emitter may have a tip radius less than 2 nm or less than 1 nm.
According to the present invention there is also provided apparatus for producing a flux of charge carriers comprising a source which comprises an emitter and an extractor to extract charge carriers from the emitter, wherein the emitter and the extractor are configured on a common substrate and a specimen, wherein the emitter and the specimen are arranged in a near-field configuration.
In the near-field configuration phase coherence of the charge carriers may be substantially maintained.
The near-field configuration may comprise an arrangement whereby the emitter and the specimen are disposed less than 200 nm from each other.
The extractor may be arranged no more than 50 nm from the emitter.
The extractor may be arranged no more than 30 nm from the emitter.
According to the present invention there is still further provided apparatus for producing a flux of charge carriers comprising a source which comprises an emitter and an extractor to extract charge carriers from the emitter, wherein the emitter and the extractor are configured so as to allow extraction of charge carriers under a gaseous atmosphere without ionisation of the gas and wherein a specimen adjacent the source, to receive a flux of charge carriers from the source.
The emitter and extractor may be configured such that said charge carriers are ext

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for producing a flux of charge carriers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for producing a flux of charge carriers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for producing a flux of charge carriers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3355897

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.