Apparatus for process line testing

Chemical apparatus and process disinfecting – deodorizing – preser – Analyzer – structured indicator – or manipulative laboratory... – Means for analyzing liquid or solid sample

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C422S129000, C700S266000, C073S054220, C073S054390

Reexamination Certificate

active

06534010

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to an inline testing device used for analyzing the state of a chemical reaction. In a specific embodiment, the testing device is a rheometer.
BACKGROUND OF THE INVENTION
Many chemical reactions are carried out in a continuous process, because of the efficiencies inherent in continuous processing related to yield and to eliminating the need to isolate intermediate products. In continuous chemical processing, it is sometimes important, in a multi-step chemical reaction, that the reaction reach a particular stage before parameters are changed, such as the addition of chemical compounds to the reaction, changes in temperature or atmospheric conditions, and the like. In the art, the status of the chemical reaction is often measured by removing a sample of material from the reaction process line, quenching the material, i.e. stopping the process of the chemical reaction, and analyzing the chemicals in the sample. The chemicals in the sample at that particular point define the status of the chemical reaction at that point, and tells the technician whether the reaction is proceeding as planned, and whether conditions are right for adding additional chemical reactants, or for changing the temperature, for example, in the processing line.
A common means for determining the state of reaction of a process is to measure certain physical properties of the compound which are a reflection of the nature of the material. Most chemicals, in a fluid state, exhibit rheological (flow) properties that are a function of the molecular size and structure of the material. For small chemical molecules with simple structure, the rheological properties of the material are fluid-like, independent of the rate and size of the applied deformation, and can be characterized in terms of a simple viscometric function such as a Newtonian viscosity. As molecular size and structure increases, a material's rheological properties become more complex and are dependent on the size and rate of the applied deformation. Polymeric materials are comprised of very long molecules and exhibit viscous (fluid-like) as well as elastic (solid-like) behavior, known to those skilled in the art as viscoelasticity. Although characterizing the viscosity of a polymer can be descriptive of its molecular size, a viscoelastic characterization which is more sensitive to molecular structure is required since a viscometric function is not descriptive of the elastic nature of the material. A more thorough treatment for describing the molecular mechanisms underlying the viscoelastic rheological behavior of polymeric fluids can be found in “Viscoelastic Properties of Polymers” by J. Ferry, Third Edition, John Wiley & Sons, N.Y. (1980).
In the chemical processing art, it is a continuing goal to completely automate the processing line. By that, it is meant that if analysis of the chemical reaction stream can be made at critical points, and the data from those critical points is fed into a computer, the computer can use the information to know when to adjust the reaction conditions as necessary, to assure that the chemical reaction goes as planned, which will improve the efficiency and yield of the chemical process. The nature of the analyzing equipment used at the critical points depends on the nature of the chemical reaction and the kind of data that will be most useful in analyzing the status of the chemical reaction. Since a chemical processing line is sometimes used for preparing more than one kind of chemical, and the materials used in the chemical processing line will change depending on the reaction, it is desirable that the analyzing equipment used be useful for a broad spectrum of chemical reactions.
It is an object of the present invention to provide a method and apparatus for analyzing the chemical or physical properties of a fluid in a reaction flow stream.
Other objects of the invention will be apparent from the following description and claims.
DESCRIPTION OF PRIOR ART
Various apparati have been developed for the use of on-line monitoring of a chemical process, most of which involve taking a side stream and pumping it through a capillary, slit, or rotating cylinder type of rheometer. These types of rheometers, however, typically provide only a viscometric and not a viscoelastic characterization of a fluid.
U.S. Pat. No. 4,468,953 (Garritano) describes an on-line concentric cylinder rotational rheometer for determining the vicoelastic properties of a fluid sampled from a process stream. The sampled fluid is introduced into the annular region of the concentric cylinders by means of a gear pump. The outer cylinder is made to oscillate about its axis of symmetry by means of a drive shaft and motor assembly, and the resultant torque on the inner cylinder is a measured by means of a torsion tube assembly that is hermetically sealed. Flow into the rheometer is distributed uniformly through the annulus so that the introduction of fresh sample flushes the previous fluid sample out of the annulus. However, in order to allow free oscillation of the outer cylinder,.the drive shaft requires the use of seals that are exposed to the thermal, chemical, and abrasive properties of the fluid. These seals require regular maintenance of the device and provide a possible source of failure during operation that could expose the surrounding environment to the hazards of the fluids being tested.
U.S. Pat. No. 4,643,020 (Heinz) describes a concentric cylinder process rheometer for characterizing the viscoelastic properties of a fluid that can be used either on-line or in the process stream. The sensing device consists of three concentric, thin-walled cylinders, the middle cylinder of which is made to oscillate about its axis of symmetry. The motion of the drive cylinder applies a shear to the fluid in the adjacent annular regions which causes a resultant torque on the drive cylinder that is measured on the drive shaft by means of a torsion tube and sensor assembly. Flexible bellows are used to seal the pivoting drive shaft from the fluid environment. Sample flushing out of the rheometer is uncontrolled, however, and the design does not allow for metered fluid flow into and out of the adjacent annuli to permit fresh sampling into the rheometer.
SUMMARY OF THE INVENTION
A method for analyzing the chemical or physical properties of a fluid in a reaction flow stream comprises the steps of (a) providing apparatus for analyzing fluid in a reaction flow stream, (b) isolating a sample of fluid in the apparatus for testing the physical and/or chemical properties of the fluid, (c) collecting data on the physical and/or chemical properties of a fluid from the apparatus, and storing the data in a computer, and (d) using the computer to control the parameters of the chemical reaction process in the reaction flow stream. In the method, the data from the apparatus for analyzing is used by the computer to determine current reaction conditions and to control the reaction parameters to maintain or achieve pre-selected reaction conditions.
The method may comprise the further step of selecting the apparatus for analyzing to be a rheometer, whereby the rheological viscoelastic properties of the reaction flow stream are analyzed.
The method may include the step of controlling parameters of the reaction selected from the group comprising temperature, flow rate, ratio of ingredients and mixtures thereof.
In the method, a sample of fluid is directed through the rheometer where the fluid is trapped between two opposed surfaces in the rheometer. One of the surfaces of the rheometer is connected to a transducer which measures the torque associated with the physical response of the sample to applied sample deformation.
The method may comprise the further steps of (a) closing the apparatus when a sample is within the analyzer and obtaining data on the sample while the sample is isolated from the reaction flow stream, (b) opening the apparatus to obtain a second sample and to return the first sample to the reaction flow stream, (c) closing t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for process line testing does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for process line testing, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for process line testing will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3071177

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.