Apparatus for post mold cooling of plastic pieces

Plastic article or earthenware shaping or treating: apparatus – Control means responsive to or actuated by means sensing or... – Mold motion or position control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S328140, C264S334000, C425S547000, C425S556000, C425S572000

Reexamination Certificate

active

06817855

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to method and apparatus for cooling molded plastic pieces after the molding is finished. In particular, the present invention relates to method and apparatus for post mold cooling of plastic pieces wherein at least two cooling stations are provided to cool the interior of the plastic pieces. The present invention also relates to method and apparatus wherein pressurized sealing of each plastic piece is carried out at a cooling station such that the pressure seal does not contact the plastic piece. The present invention also relates to method and apparatus wherein plastic piece cavity tubes are provided with vents to prevent deformation of negative draft plastic pieces. Preferably, the plastic pieces comprise plastic preforms.
2. Related Art
A variety of post mold cooling methods are currently employed on injection molding machines (e.g., an Index machine platform) in various sequences to optimize the cooling of freshly molded plastic parts. Some parts (for example plastic preforms) are typically injection-molded using PET resin, and can have wall thicknesses varying from about 2.00 mm to greater than 4.00 mm, and consequently require extended cooling periods to solidify into defect-free parts. Heavy walled parts (such as these made from a material that has a high resistance to thermal heat transfer, like plastic resin) can exhibit a “reheating” phenomena that can produce defective parts after they have been ejected from the mold.
In the case of PET performs some of these manufacturing defects are:
Crystallinity: The resin recrystallizes due to the elevated temperature of the core resin not cooling quickly enough. The white appearance of the crystals impairs the clarity of the final product.
Surface blemishes: The ejected performs, initially having solidified surfaces are reheated by the core material which causes the surface to soften and be easily marred. Sometimes this surface reheating can be severe enough to cause touching parts to weld together.
Geometric inaccuracies: Handling partly-cooled performs or attempting to further cool them in devices that do not maintain their geometric shape while their surfaces are reheated can cause the preform's round diameter to become oval shaped or the smooth surface to become wrinkled or non-linear.
The above-noted problems could be alleviated somewhat by extending the cooling time of the injection molded performs. However, this will cause the injection molding cycle to be lengthy, typically 25 seconds or longer, wherein the majority of this time was used solely for cooling purposes. In an effort to improve the production efficiency of this process, several techniques are employed to perform a “post mold cooling” function, wherein partially-cooled performs are ejected from the injection mold after an initially cooled surface skin has formed to allow the part to be ejected without deformation. The partially-cooled performs are then handed off to a downstream device that continues to hold the perform while removing the remaining heat so that the preform can subsequently be handled without damage. Typically, the preform surface temperature needs to be lowered to about 72° C. to ensure safe handling.
The early ejection of partially-cooled performs released the injection molding equipment earlier in the molding cycle, thereby significantly improving the production efficiency of the equipment. Injection molding cycle times typically were halved from 25 seconds to about 12 seconds or less in some instances depending on the perform design being molded.
Some examples of post mold cooling technology are shown in U.S. Pat. Nos. 4,729,732; Re. 33,237; 5,447,426; and 6,171,541, the contents of each being incorporated herein by reference.
Another approach to extending the cooling time for performs is to utilize a turret molding machine in which more than one set of injection molding cores are employed. An example is the Index machine, shown in U.S. Pat. Nos. 5,728,409; 5,830,404; 5,750,162; and 5,817,345 (the contents of each being incorporated herein by reference), which teach using a turret block having four faces and four core sets that are sequentially mated with one cavity set to hold the injection mold performs. Preforms molded on this kind of equipment can be produced in molding cycle times of typically 10-13 seconds.
A disadvantage of the above-described approach is the cost of the additional core side tooling that is required. In order to reduce this cost, Index machines with fewer core side tooling sets were employed. However, to maintain the cycle times, additional post mold cooling devices are needed to complete the perform cooling. Examples of Index machines with post mold cooling devices are shown in U.S. Pat. Nos. 6,059,557; 6,123,538; 6,143,225; and 6,113,834, the contents of each being incorporated herein by reference.
One technique for improving the rate of heat transfer from a cooling perform is to pressurize its interior volume while cooling it in a cavity. This method helps keep the preform's exterior surface in contact with the cooling cavity surface, and counters the shrinkage of the perform which tends to separate the two surfaces. This allows good heat transfer to be maintained. Examples of pressurized perform cooling are shown in U.S. Pat. Nos. 4,950,152; and 5,679,306, and in EP 0 900 135, the contents of each being incorporated herein by reference.
Therefore, there is a need for post-mold cooling method and apparatus, which provides rapid, efficient cooling while further reducing the molding cycle time to further decrease the cost of producing molded plastic pieces.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide post-mold cooling method and apparatus for efficiently cooling molded plastic pieces.
According to a first aspect of the present invention, structure and/or steps are provided for cooling a plurality of plastic parts whereby a take out structure/step is configured to hold the plurality of plastic parts oriented such that closed ends thereof are disposed toward an inside of the take out structure and open ends thereof are disposed toward an outside of the take out structure. A movement structure/step is configured to cause relative movement between the take out structure and at least one of a first cooling station and a second cooling station. The first cooling station includes a first cooling structure/step configured to provide a cooling fluid to an inside of the plurality of plastic parts through the open ends thereof. The second cooling station includes a second cooling structure/step configured to provide a cooling fluid to an inside of the plurality of plastic parts through the open ends thereof.
According to a second aspect of the present invention, structure and/or steps are provided for post-mold cooling of a matrix of plastic preforms whereby a take out plate includes a first plurality of receiving tubes configured to receive a first plurality of plastic preforms, and a second plurality of receiving tubes configured to receive a second plurality of plastic preforms. At least one of the first and second plurality of receiving tubes is configured to cool outside surfaces of the corresponding plurality of plastic preforms. A movement structure/step is configured to provide relative movement between the take out plate and first and second cooling stations. The first cooling station includes (i) a plurality of injector devices, each of which is configured to inject a pressurized cooling medium to an interior of a corresponding plastic preforms, and (ii) a plurality of sealing devices, each of which is configured to provide a pressure seal between the injected pressurized cooling medium and a lower, ambient pressure. The second cooling station includes (i) a plurality of cooling pins, each of which is configured to direct a cooling medium at a tip of an inside of a corresponding plastic preform so that the directed cooling medium flows down an inside surface of the corresponding plastic pr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for post mold cooling of plastic pieces does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for post mold cooling of plastic pieces, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for post mold cooling of plastic pieces will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3315839

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.