Apparatus for packaging flip chip bare die on printed...

Active solid-state devices (e.g. – transistors – solid-state diode – Encapsulated

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S778000

Reexamination Certificate

active

06661103

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention: The present invention relates to an apparatus and a method for providing a protective cover plate for a packaged semiconductor chip. More particularly, the present invention relates to attaching a protective plate on a flip chip, wherein the protective plate may also serve as a heat sink.
State of the Art: Chip On Board (“COB”) techniques are used to attach semiconductor dice to a printed circuit board, including flip chip attachment, wirebonding, and tape automated bonding (“TAB”). Flip chip attachment consists of attaching a flip chip to a printed circuit board or other substrate. A flip chip is a semiconductor chip that has a pattern or array of terminals spaced around an active surface of the flip chip for face down mounting of the flip chip to a substrate. Generally, the flip chip active surface has one of the following electrical connectors: Ball Grid Array (“BGA”)—wherein an array of minute solder balls is disposed on the surface of a flip chip that attaches to the substrate (“the attachment surface”); Slightly Larger than Integrated Circuit Carrier (“SLICC”)—which is similar to a BGA, but having a smaller solder ball pitch and diameter than a BGA; or a Pin Grid Array (“PGA”)—wherein an array of small pins extends substantially perpendicularly from the attachment surface of a flip chip, such that the pins conform to a specific arrangement on a printed circuit board or other substrate for attachment thereto. With the BGA or SLICC, the solder or other conductive ball arrangement on the flip chip must be a mirror-image of the connecting bond pads on the printed circuit board so that precise connection is made. The flip chip is bonded to the printed circuit board by refluxing the solder balls. The solder balls may also be replaced with a conductive polymer. With the PGA, the pin arrangement of the flip chip must be a mirror-image of the pin recesses on the printed circuit board. After insertion, the flip chip is generally bonded by soldering the pins into place. A variation of the pin-in-recess PGA is a J-lead PGA, wherein the loops of the J's are soldered to pads on the surface of the circuit board.
Glob top and underfill materials are often used to hermetically seal the flip chips on the substrate. An underfill encapsulant is generally disposed between the semiconductor chip and the printed circuit board or substrate for environmental protection and to enhance the attachment of the semiconductor die to the substrate. In certain applications, only an underfill encapsulant is used in the semiconductor assembly without protecting the back surface of the semiconductor chip. The exposure of the semiconductor chip back surface leaves the semiconductor chip susceptible to damage. Furthermore, the application of the underfill encapsulant must be closely monitored. For example, too little underfill does not protect the device sufficiently enough from outside contamination and can give rise to a greater concentration of voids. Such voids can lead to the catastrophic failure of the chip. If too much underfill is used, the underfill encapsulant can rise to cover the edges of the chip, can expand or can spread out to adjacent areas of the board that do not require underfill.
Since the underfill encapsulant alone does not protect the back of the dice, an additional protection step of providing a glob top is typically used. As shown in
FIG. 1
, after assembly of a COB component
100
, an underfill encapsulant
114
is generally placed between a semiconductor chip or flip chip
104
that is attached to a substrate
106
via a plurality of electrical connections
108
that extend between a plurality of semiconductor chip bond pads
110
and a corresponding plurality of substrate bond pads
112
. The technique for applying the underfill encapsulant comprises dispensing the underfill encapsulant in a liquid form and allowing capillary action to draw it between the semiconductor chip
104
and the substrate
106
. The underfill encapsulant then solidifies upon oven curing and reinforces all electrical connections
108
. A variety of polymers can be used as underfill encapsulants, including thermosetting molding compounds such as silicones, epoxies, polyamides, and parylenes. A glob of encapsulant material
102
(usually epoxy or silicone or a combination thereof) is generally applied to the COB assembly
100
to surround the semiconductor chip
104
and the substrate
106
. Organic resins generally used in the glob top encapsulation are usually selected for low moisture permeability and low thermal coefficient of expansion to avoid exposure of the encapsulated chip to moisture or mechanical stress, respectively. However, even though the chemical properties of these glob top materials have desirable properties for encapsulation, the thermal and electrical properties are often not optimal for removing heat efficiently away from the semiconductor dice or for use in high temperature areas. Furthermore, the addition of glob top materials can induce detrimental stresses that can cause catastrophic failures. The stresses occur when the glob top is cured and has different mechanical characteristics such as an expansion coefficient compared to the underfill material.
Other techniques for protecting semiconductor dice include U.S. Pat. No. 5,432,676 which teaches a lid placed over a cavity containing a plurality of semiconductor dice and U.S. Pat. No. 5,477,082 which teaches a heat sink or non-heat-conductive covering to form a top surface of a module.
Every semiconductor chip in a COB assembly generates heat during operation. Some glob tops and package encapsulation materials may serve to draw the heat away from most semiconductor chips. Indeed, one factor in choosing a package encapsulation material is its thermal dissipation properties. If the operating temperature of the semiconductor chip is not controlled or accommodated, reliability problems of the chip or system in which the chip is installed may occur due to excess temperature rise during operation. The device/semiconductor junction temperature (the location of the heat source due to power dissipation) must be maintained below a predetermined limiting value, typically such as 85° C. The primary reason to control device/semiconductor junction temperature is that the performance of the device is a sensitive function of device temperature. In addition, various failure mechanisms are thermally activated, and failure rates become excessive above the desired temperature limit, causing reliability concerns. Furthermore, it is important to control the variation in device operating temperature across all the devices in the system. This is also due to the temperature sensitivity of switching voltage, since too large a variation from device to device would increase the voltage range over which switching occurs, leading to switching errors due to noise and power-supply fluctuations. Moreover, the fluctuations in temperature cause differential thermal expansions that give rise to a fatigue process that can lead to cracks occurring in the COB assembly during burn-in or general operation.
Thus, high heat producing semiconductor dice, such as a microprocessor, may require adjustments in size of the COB assembly and will often require the addition of metal heat-dissipating fins, blocks, or the like on the package. Referring to
FIG. 2
, a finned COB assembly
200
is illustrated. The finned COB assembly
200
comprises a semiconductor chip or flip chip
202
which is attached to a substrate
204
via a plurality of electrical connections
206
which extend between a plurality of semiconductor chip bond pads
208
and a corresponding plurality of substrate bond pads
210
. An underfill encapsulant
212
is disposed between the semiconductor chip
202
and the substrate
204
. A cap
214
having a plurality of heat-dissipating fins
216
is attached to an upper surface
218
of the semiconductor chip
202
with a layer of thermally conductive adhesive
220
. U.S. Pat. No. 5,396,403 issued Mar. 7, 1995 t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for packaging flip chip bare die on printed... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for packaging flip chip bare die on printed..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for packaging flip chip bare die on printed... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3105489

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.