Apparatus for near simultaneous observation of directly...

Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S473000, C600S476000, C356S342000, C351S221000

Reexamination Certificate

active

06236877

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to the field of image processing and in particular, to methods and devices for separating multiply scattered light from directly scattered light.
BACKGROUND OF THE INVENTION
In many imaging applications, the object to be imaged includes a highly remittive layer. When light illuminates such an object, the resulting image consists of a directly scattered component reflected from this highly remittive layer and a multiply scattered component which is scattered from points that are within the object and outside the highly remittive layer. Because the layer is highly remittive, the directly scattered component tends to dominate the image. As a result, it is difficult to capture the multiply scattered component of the image.
An example of an object having a highly remittive layer is the human retina. In the retina, certain structures are visible only by examination of the directly scattered component of the image. These structures cannot be seen clearly by examination of the multiply scattered component. Examples of such structures include small blood vessels and superficial features of the optic nerve head. Conversely, there exist other retinal structures, such as drusen and sub-retinal edema, which are visible to a far greater extent in the multiply scattered component. Some of these structures cannot readily be observed by examination of the directly scattered light. Accordingly, it is desirable to provide an ocular fundus imaging apparatus for permitting an eye-care specialist to switch easily between observation of the directly scattered component and observation of the multiply scattered component of the image.
A known technique for separating an image into its multiply scattered component and its directly scattered component is to illuminate the retina with a point light source and to direct the remitted image field through a field stop confocal to the light source. By providing the field stop with a pinhole aperture, one can observe the directly scattered component of the image. Alternatively, by providing the field stop with an annular opening, one can observe the multiply scattered component of the image. These techniques are described in Elsner A. E., Burns S. A., Weiter J. J., and Delori F. C.,
Infrared imaging of subretinal structures in the human ocular fundus,
Vision Research 36, 191-205, 1996.
Using the foregoing technique, one can provide a field stop with a pinhole aperture, observe the directly scattered component of the image, replace the pinhole aperture with an annular aperture, and then proceed to observe the multiply scattered component of the image. By scanning in two dimensions, one can then generate a two-dimensional image which includes only the multiply scattered component and create another image which includes only the directly scattered component. Similarly, by using known techniques of tomography, one can obtain pairs of cross sections, one including only the multiply scattered component and another which includes only the directly scattered component.
In certain opthalmological applications, it is desirable to precisely locate a structure which can be imaged in the multiply scattered component with respect to a known feature observable only in the directly scattered component. For example, it may be useful to know that a particular region of drusen or edema is located near the intersection of two blood vessels.
A disadvantage of the foregoing known technique is that a significant interval elapses between the measurement of the directly scattered component and the subsequent measurement of the multiply scattered component. This interval arises because of the time required to replace the pinhole aperture with an annular aperture.
Using the method described above, one can, in principle, accomplish the task of precisely locating a structure visible in one component relative to a feature visible in the other component by capturing an image of the directly scattered field and then overlaying it on the image of the multiply scattered field. By aligning the image from the multiply scattered component with the image from the directly scattered component, one can then locate a structure visible only in one component relative to a structure visible only in the other component.
In practice, however, the retina is constantly subject to rapid and unpredictable motion. As a result, in the brief interval, referred to as a blanking interval, that elapses as the annular aperture replaces the pinhole aperture, the retina will have moved by some unknown amount. Since a patient cannot eliminate eye movements, the position of the retina during observation of the multiply scattered component will, in general, not be the same as the position of the retina during observation of the directly scattered component. This unpredictable motion of the retina interferes with the reliable alignment of the two images.
The foregoing disadvantage can, in principle, be mitigated by reducing the blanking interval. If the blanking interval is made short enough, the retina will move a negligible amount between the observation of the directly scattered component and the observation of the multiply scattered component.
In practice, however, the mechanical inertia associated with replacing the pinhole aperture with an annular aperture prevents the blanking interval from being made short enough to capture two successive images without noticeable movement of the retina between images. What is necessary and desirable in the art therefore is an apparatus and method for reducing the blanking interval, thereby permitting observation of the directly scattered component and the multiply scattered component of an image field substantially simultaneously.
SUMMARY OF THE INVENTION
In the method and apparatus of the invention, an illumination source directs incident light onto an illuminated target point optically conjugate to a pinhole aperture. Light remitted from this illuminated point forms an image having a directly scattered component and a multiply scattered component. A stationary field stop of constant geometry separates the remitted image into these two constituent components and directs the two components to one or more detectors. As a result, there is no need for the time-consuming change of the field stop geometry. Consequently, the two constituents of the image can be observed substantially simultaneously.
In one embodiment of the invention, the field stop for separating the two constituents of the image includes a first region optically conjugate to the illuminated point and a second region which is adjacent to the first region. The first region is disposed so that primarily directly scattered light is incident upon it. The second region is disposed so that primarily multiply scattered light is incident on it.
In the foregoing embodiment, the second region can be a reflective surface and the first region can be a pinhole aperture in the reflective surface. In this embodiment, the pinhole aperture admits the directly scattered component of the image and the reflective surface adjacent to the pinhole aperture reflects the multiply scattered component of the image. A detector in optical communication with the pinhole aperture detects the directly scattered component passing through the pinhole aperture. Simultaneously, another detector in optical communication with the reflective surface surrounding the aperture detects the multiply scattered component reflected by the reflective surface. In this embodiment, the directly scattered component and the multiply scattered component are detected simultaneously by two different detectors.
Conversely, the foregoing embodiment can be realized by providing a first region which is a reflective surface and a second region which is an annular aperture surrounding the reflective surface. In this case, the annular aperture admits the multiply scattered component of the image and the reflective surface within the annular aperture reflects the directly scattered component of the image.
The foregoing embodiment c

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for near simultaneous observation of directly... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for near simultaneous observation of directly..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for near simultaneous observation of directly... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2442484

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.