Communications: electrical – Vehicle detectors – With camera
Reexamination Certificate
2002-08-27
2004-06-01
Pope, Daryl (Department: 2632)
Communications: electrical
Vehicle detectors
With camera
C340S903000, C340S904000, C340S435000, C340S436000, C340S437000, C701S301000, C701S300000
Reexamination Certificate
active
06744380
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to an apparatus for monitoring an area adjacent to a vehicle such as an area in front of the vehicle. In addition, this invention relates to a computer program for monitoring an area adjacent to a vehicle.
2. Description of the Related Art
A known on-vehicle apparatus takes an image of conditions of a road in front of a subject vehicle, and analyzes the image to detect an obstacle to the subject vehicle. Typical operation of the known on-vehicle apparatus is as follows. A preceding vehicle with respect to the subject vehicle is detected. The positional relation between the preceding vehicle and the subject vehicle is detected. On the basis of the detected positional relation, a decision is made as to whether or not the preceding vehicle is an obstacle to the subject vehicle. When it is decided that the preceding vehicle is an obstacle, the speed of the subject vehicle is controlled or an alarm is given. To detect a preceding vehicle and accurately measure the position thereof, the known on-vehicle apparatus implements complicated image and signal processing procedures.
U.S. Pat. No. 5,369,590 corresponding to Japanese patent application publication number 5-296767 discloses an inter-vehicle distance detecting device which operates as follows. The device displays the images of preceding vehicles, sets a tracking window surrounding one of the images and tracks it, calculates the distance from the driving vehicle to the preceding vehicle, and sets a plurality of shadow windows which are not displayed and which are different from the tracking window, at predetermined positions in the image taken by one of top and bottom image sensors. Distances from the driving vehicle to objects caught by the respective shadow windows are detected from the deviation between top and bottom corresponding image signals, and a symmetry determining means reads image signals in an arbitrary domain in the shadow windows and surroundings and determines horizontal symmetry. A cut-in vehicle or lane change of the one of the preceding vehicles which is image-tracked by predicting movements thereof in front of the driving vehicle is detected based on information about the distances from the driving vehicle to the objects in the shadow windows, an output of the symmetry determining means, and information provided by a calculation based on the preceding vehicle tracked by the tracking window.
Japanese patent application publication number 9-223235 discloses a system mounted on a subject vehicle. The system includes a camera for taking an image of a road in front of the subject vehicle. On the basis of the road image, detection is given of the boundary between the lane where the subject vehicle is moving and a lane next to the lane of the subject vehicle. A vehicle moving in the next lane and preceding the subject vehicle is recognized in response to the road image. Moving conditions of the next-lane preceding vehicle are detected. The detected lane boundary and the detected moving conditions are used in detecting the inclination angle of the moving direction of the next-lane preceding vehicle relative to the lane boundary. The system decides whether or not the next-lane preceding vehicle will enter the lane of the subject vehicle on the basis of the detected inclination angle.
Japanese patent application publication number 11-48885 discloses an on-vehicle distance measurement apparatus including two juxtaposed cameras for taking images of an area in front of a subject vehicle. The cameras have image sensors onto which the images are focused by optical systems, respectively. The images on the image sensors are compared by electrical image processing to get a condition where they best correlate with each other. Under the best-correlation condition, shifts of a same object in the images from the optical axes are detected. The distance from the subject vehicle to the object is measured by triangulation responsive to the detected shifts. A plurality of objects such as vehicles preceding the subject vehicle can be detected. In the case where first and second preceding vehicles are detected and the first preceding vehicle is handled as a distance-measured object, a decision is made as to whether or not the second preceding vehicle has entered the region between the subject vehicle and the first preceding vehicle. Also, a decision is made as to whether or not the first preceding vehicle has moved from the region between the subject vehicle and the second preceding vehicle to a lane different from the lane of the subject vehicle. When it is decided that the second preceding vehicle has entered the region between the subject vehicle and the first preceding vehicle, the distance-measured object is changed from the first preceding vehicle to the second preceding vehicle. When it is decided that the first preceding vehicle has moved from the region between the subject vehicle and the second preceding vehicle, the distance-measured object is changed from the first preceding vehicle to the second preceding vehicle.
SUMMARY OF THE INVENTION
It is a first object of this invention to provide a simple apparatus for monitoring an area adjacent to a vehicle.
It is a second object of this invention to provide a simple computer program for monitoring an area adjacent to a vehicle.
A first aspect of this invention provides an apparatus for monitoring an area adjacent to a subject vehicle. The apparatus comprises image taking means for taking an image of an area at and around a place to which the subject vehicle is directed; predicting means for predicting a region to which the subject vehicle will travel, the predicted region having a left-hand boundary and a right-hand boundary; setting means for setting a detection area near at least one of the left-hand boundary and the right-hand boundary of the predicted region, the detection area extending along a direction of travel of the subject vehicle; and deciding means for deciding whether or not a three-dimensional object exists in the detection area in response to the image taken by the image taking means.
A second aspect of this invention is based on the first aspect thereof, and provides an apparatus wherein the detection area comprises small areas having a prescribed width, and the small areas are arranged along the direction of travel of the subject vehicle, and are partially overlapped to enhance a resolution relating to distance from the subject vehicle.
A third aspect of this invention is based on the first aspect thereof, and provides an apparatus wherein the predicting means comprises means for setting the predicted region in response to a width of the subject vehicle.
A fourth aspect of this invention is based on the first aspect thereof, and provides an apparatus wherein the predicting means comprises turn condition detecting means for detecting a turn condition of the subject vehicle, and means for setting the predicted region in response to the turn condition detected by the turn condition detecting means.
A fifth aspect of this invention is based on the first aspect thereof, and provides an apparatus wherein the predicting means comprises lane mark detecting means for detecting lane marks on a road along which the subject vehicle is traveling, and means for setting the predicted region in response to the lane marks detected by the lane mark detecting means.
A sixth aspect of this invention is based on the first aspect thereof, and provides an apparatus wherein the setting means comprises vehicle speed detecting means for detecting a speed of the subject vehicle, and means for setting the detection area in response to the speed detected by the vehicle speed detecting means.
A seventh aspect of this invention is based on the first aspect thereof, and provides an apparatus wherein the image taking means comprises a plurality of cameras spaced at a prescribed interval, and the deciding means comprises means for detecting a parallax between portions of images taken by the cameras which correspond to
Imanishi Masayuki
Nakamura Tetsuya
LandOfFree
Apparatus for monitoring area adjacent to vehicle does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus for monitoring area adjacent to vehicle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for monitoring area adjacent to vehicle will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3326709