Apparatus for measuring quantity of toner, and image forming...

Electrophotography – Control of electrophotography process – Of plural processes

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06597878

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a toner quantity measuring apparatus which measures the quantity of toner adhering to an image carrier such as a photosensitive member and a transfer medium, and an image forming apparatus which comprises such a toner quantity measuring apparatus.
2. Description of the Related Art
For the purpose of realizing a stable image density, an image forming apparatus of the electrophotographic type, such as a printer, a copier machine and a facsimile machine, internally comprises a toner quantity measuring apparatus which measures the quantity of toner adhering to an image carrier such as a photosensitive member and a transfer medium. Such a toner quantity measuring apparatus is as described in Japanese Patent Application Unexamined Gazette No. 2000-29271, for example. A toner quantity measuring apparatus described in this gazette (hereinafter “first conventional apparatus”) has a light emitting element irradiating light toward an image carrier such as a photosensitive member and a reflection-side light receiving unit including a light receiving element. The light receiving element receives reflected light from the photosensitive member so that the quantity of toner on the photosensitive member is calculated based on the quantity of the received light (the quantity of the reflected light).
Further, aiming at stabilization of the quantity of the irradiated light, a beam splitter splits the irradiated light at a predetermined ratio, whereby the irradiated light is partially extracted. Another light receiving element (of irradiation-side light receiving unit) detects the quantity of the extracted light, and the light emitting element is feedback-controlled in such a manner that the detection result stays at a reference value.
Meanwhile, often used as a light receiving element is as shown in
FIG. 1
, for instance.
FIG. 1
is a drawing of an electric structure of a conventional light receiving unit. In this light receiving unit, an anode terminal of a light receiving element PS, such as a photodiode, is connected with a ground potential and a non-inversion input terminal of an operational amplifier OP which forms a current-voltage (I/V) conversion circuit. A cathode terminal of the light receiving element PS is connected with the non-inversion input terminal of the operational amplifier OP, and additionally, with an output terminal of the operational amplifier OP through a resistor R. Hence, as the light receiving element PS receives light and carries a photoelectric current i, an output voltage V
0
at the output terminal of the operational amplifier OP is:
V
0
=i·R
Thus, the light receiving unit outputs a signal corresponding to the quantity of the reflected light.
In the light receiving unit having such a structure, since the level of the output signal, e.g., an output voltage, from the light receiving unit changes approximately in proportion to the quantity of incident light which is the quantity of the reflected light from a photosensitive member, the circuitry of the light receiving unit is normally configured such that a detection signal having a characteristic as that denoted at the solid line in
FIG. 2
is obtained. However, depending on irregularity among light receiving units or other circuit elements, a change in characteristics due to an environmental condition, a change in characteristics due to deteriorated durability, etc., a characteristic as that denoted at the dotted line or the dotted-and-dashed line in
FIG. 2
may be realized.
Now, a characteristic as that denoted at the dotted-and-dashed line in
FIG. 2
will be considered. Assuming that the circuit shown in
FIG. 1
is operated by a dual power supply which uses a (+15V)-power source and a (−15V)-power source, a negative voltage is outputted when the quantity of the reflected light is zero. However, as a dual power supply requires a higher cost for a power source part, a single power supply with only a (+15V)-power source is often used in an actual apparatus. Yet, if only one power source is used, as indicated by the characteristic at the dotted-and-dashed line in
FIG. 2
, a so-called dead zone where the output voltage level remains at zero without any change will be developed. This in other words is a problem that such a toner quantity which produces only a small amount of reflected light can not be measured. This problem worsens particularly when high-density black toner is to be detected, since black toner absorbs light and the amount of reflected light therefore sharply decreases.
Noting this, another option for measurement of a toner quantity on the high-density side may be to increase the quantity of the irradiated light from the light emitting element, and hence, the quantity of the reflected light. However, this merely shifts the problematic zone but fails to completely solve the problem since a similar problem will rise during measurement of the quantity of toner having an even higher density. Further, in the case of the first conventional apparatus, it is possible to set the quantity of the irradiated light from the light emitting element only at one single light quantity. Hence, a toner quantity can be accurately measured only within a limited density range in the first conventional apparatus.
On the other hand, a characteristic as that denoted at the dotted line in
FIG. 2
leads to a situation that an output does not become zero even if the light emitting element is not irradiating light, which is known as outputting of a dark output. Due to this, even when the light emitting element irradiates light upon the photosensitive member and the quantity of the reflected light from the photosensitive member is detected, the detection result contains a dark output component. Adding to the difficulty, the dark output is relevant to characteristics such as a dark current of the light receiving unit and an offset of the operational amplifier, and therefore, changes in accordance with an environmental condition, such as a temperature around the apparatus, and a change with time of the components which form the apparatus. Thus, highly accurate measurement of a toner quantity is difficult.
A conventional approach to these problems is to suppress the irregularity using an adjustment circuit which is disposed inside the apparatus. However, such a structure has been met with a challenge that the light receiving unit has a complex circuit, a higher cost is required as repeated adjustment is necessary and even more highly accurate measurement is difficult because of other factors such as uneven adjustment.
In a different toner quantity measuring apparatus described in the gazette above (hereinafter “second conventional apparatus”), a light emitting element irradiates light toward a photosensitive member (image carrier), light reflected at the photosensitive member is split into p-polarized light and s-polarized light, and a p-polarized light receiving unit detects the quantity of the p-polarized light while an s-polarized light receiving unit detects the quantity of the s-polarized light. The quantity of toner on the photosensitive member is found based on a difference between these two light quantities.
In the second conventional apparatus, units as that shown in
FIG. 1
are used as the light receiving units, which results in similar problems to those with the first conventional apparatus described above. Further, measuring the quantity of the toner based on the difference between the two light quantities, the second conventional apparatus has another problem as described below. Owing to an environmental factor such as an ambient temperature and humidity, a change with time of the light emitting element, etc., the quantity of irradiated light upon the photosensitive member, a transfer image carrier or the like may sometimes change, and therefore, a toner quantity is wrongly detected because of the change in the quantity of irradiated light. For instance, as the quantity of irradiated light upon an image carr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for measuring quantity of toner, and image forming... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for measuring quantity of toner, and image forming..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for measuring quantity of toner, and image forming... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3061495

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.