Apparatus for measuring bioelectrical parameters

Surgery – Diagnostic testing – Measuring electrical impedance or conductance of body portion

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S554000

Reexamination Certificate

active

06295468

ABSTRACT:

FIELD OF INVENTION
The invention relates to an apparatus for measuring bioelectrical parameters of the human or animal body at acupuncture points by the implementation of a bioelectrical function diagnosis.
BACKGROUND INFORMATION
The bioelectrical function diagnosis as an alternative diagnosis method proceeds from the ground rule system, which describes the human body as a control loop that responds to external stimuli. The bioelectrical function diagnosis proceeds from the fact that an external stimulus leads to an interruption in the control loop. This interruption can be demonstrated whenever certain bioelectrical measures change at acupuncture points. With bioelectrical function diagnosis, functional interruptions of individual organs can be inferred from deviations from the regular process described as normal (“The system of a ground rule and bases of a holistic biological medicine, Prof. Dr. med. Alfred Pischinger, Karl F. Haug Publishers, Heidelberg”).
Various devices are known for ascertaining potential differences and resistances as biological measures, whereby electrical measures can be read by means of electrodes on the skin surface of the body. It is a matter here of conventional voltage or resistance measuring devices. In practice, it has been shown that values derived from known devices for voltage and resistance can be afflicted by considerable errors of measurement, since they do not deliver the required relative measures in a way that can be reproduced.
Therefore, it is the underlying task of the invention to create an apparatus for measuring bioelectrical values of the human and animal body at acupuncture points that has a high level of accuracy and delivers reproducible measurement values.
BRIEF SUMMARY OF THE INVENTION
The achievement of this task ensues according to the invention with the characteristic of patent claim
1
.
The invention-conforming apparatus comprises a measuring electrode for the production of a first electrical skin contact and an earth electrode for the production of a second electrical skin contact. The measuring process is based on a constant electrical current being applied at an acupuncture point that flows from the one to the other electrode. The measuring process proceeds from the fact that the test section in the body between the electrodes can be described very approximately by a simplified electrical equivalent circuit diagram, consisting of the series circuit of a bodily voltage source and an electrical resistor. When a current flows over the test section, measurements are thus taken of the sum of the two voltages, namely the voltage drop at the resistor and the bodily voltage. The voltage at the resistor is found according to Ohm's law from the product of the current over the test section and the value of the resistance (U=R·I).
The invention-conforming apparatus now allows the determining of bioelectrical parameters, especially of bodily voltage and/or of the electrical resistance of the test section. Instead of resistance, information can also be gained about conductivity, which is the reciprocal value of resistance.
The potential differences between the measuring and earth electrode are measured when there is a constant current flow from the measuring to the earth electrode and from the earth to the measuring electrode. From both potential differences with a positive and negative constant current, it is possible to determine the bioelectrical measure. The determining of the bioelectrical measures ensues preferably in an analogue or digital calculator by adding the sum of both measured potential differences.
The inventor has acknowledged that too great a current can lead to an exchange effect with the body and so lead to a falsification of the measurement results. It has been shown that reliable measurement results can be attained if the current is <50 nA, preferably <10 nA. More meaningful measurements can only be attained with the known measuring devices if the current is reduced to a value which has no influence on the bioelectrical control loop, independently of whether the bioelectrical measures are determined with positive and negative current.
In a preferred embodiment, the apparatus comprises means of indicating the bioelectrical measures. The bioelectrical measures can for example be shown on digital or analogue indicators. The measurement values can also be stored and electronically evaluated.
The means for producing the positive and negative constant current include more advantageously two constant current sources and a switch-box, which alternately switches one current source on and the other off. To be able to produce two constant currents of the same value but with different polarity, it is more advantageous to construct the constant current sources in a complementary way. This reduces measurement inaccuracies based on temperature changes.
In a further preferred embodiment, both constant current sources produce a current greater than the measurement current. This current then serves to produce the actual measuring current. It is more advantageous here to supply a voltage-sequential switched operational amplifier. This has the advantage of thereby simplifying the switching technological design of the constant current source.
In a preferred configuration, means are supplied to eliminate interruptions that can lead to a considerable falsification of the measurement results.
The means to eliminate interruptions for example from the main supply can include a filter at the outlet of the operational amplifier, having at least one R/C link.
Assuming that the overlapping interrupted voltage of the direct current is an alternating current with a symmetrical course, a particularly effective elimination of the interspersions can be attained by getting an average of the peak values of the first and second potential difference. In the case of a symmetrically curved form of the interrupted voltage, the average corresponds exactly to the direct current. More meaningful measurement results can be gained from known measuring devices only with such elimination of disturbances, independently of whether the measurements are read with a positive or negative constant current.
The earth electrode is preferably a surface electrode, for example, in the form of an adhesive band attached to the wrist, while the measurement electrode is preferably in the form of a touch electrode applied under slight pressure to the skin at the respective acupuncture point.
Furthermore, the inventor has acknowledged that electrodes made of metal can lead to a falsification of the measurement results. The measuring and/or earth electrode are therefore preferably carbon electrodes. Synthetically bound carbon fibres have proved particularly advantageous. Using carbon electrode reduces interactions with the body through electrolytic processes.
In order to evaluate the measurement results in a personal computer, there are provided means for the digitalizing of measurement values and an interface as an attachment to the PC, which for example permit the designation of measurement curves, or the like. The analog/digital adaptor can be made available as a separate unit, whereby the analog values are given out via the interface. Preferably, the interface would be a serial or parallel interface for the transfer of digitalized signals, for example, a Centronics interface.
The invention-conforming apparatus can show one or a number of measure-points which preferably can be consulted in turn via a measure-point commutator, for example, a multiplexer.


REFERENCES:
patent: 3834374 (1974-09-01), Ensanian
patent: 3971366 (1976-07-01), Motoyama
patent: 4807643 (1989-02-01), Rosier
patent: 4940060 (1990-07-01), Gu et al.
patent: 5797854 (1998-08-01), Hedgecock

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for measuring bioelectrical parameters does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for measuring bioelectrical parameters, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for measuring bioelectrical parameters will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2531375

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.