Apparatus for measuring and characterizing thermal...

Dynamic magnetic information storage or retrieval – Checking record characteristics or modifying recording...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C360S053000, C360S031000

Reexamination Certificate

active

06504662

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to improvements in manufacturing and operating techniques for mass data storage devices, and the like, and more particularly to improvements in methods and apparatuses for reducing the effects of thermal asperities of an MR read head, or the like, in a signal read back from a rotating magnetic disk of a mass data storage device, or the like.
2. Relevant Background
Mass data storage devices include tape drives, as well as hard disk drives that have one or more spinning magnetic platters or disks onto which data is recorded for storage and subsequent retrieval. Hard disk drives may be used in many applications, including personal computers, set top boxes, audio, video, or television applications, or some mix thereof. Many applications are still being developed. Applications for hard disk drives are increasing in number, and are expected to further increase in the future.
One class of mass data storage devices to which the present invention has particular applicability is hard disk drive systems. A hard disk drive system typically includes a rotating magnetic disk on which information is recorded. A read transducer is movably supported adjacent the magnetic disk for reading the prerecorded information from the disk. The read transducer typically flies above the surface of the disk, being supported by an “air bearing” that is created by the spinning disk, so that the transducer does not touch the surface of the disk in normal operation.
Recently, magnetoresistive (MR) heads have been gaining wide popularity for use as the read transducer. The term “magnetoresistance” refers to the change in resistivity of the materials of the head in the presence of the magnetic field induced in the head by the magnetic domains recorded on the disk. The introduction of MR heads into disk drives has significantly increased the a real density. However, accompanying the MR head is the problem of thermal asperity disturbances, which can cause unrecoverable errors.
A thermal asperity disturbance results when a metal particle, disk defect, or the like nearly or actually collides with the MR head, momentarily raising the temperature of the sensor. The heat conducted into the MR sensor subsequently diffuses slowly. This rapid rise in temperature changes the MR resistance and results in a voltage transient. When superimposed on the normal read back signal, the resultant shape shows a rapid rise in voltage followed by an exponential-like decay.
Similarly, if a dip in the disk exists that has the effect of increasing the air-bearing gap between the MR head and disk surface, a decrease in the cooling effect may occur in the MR head. The resulting change in resistance of the MR head material is the same as that produced by the head heating effects described above.
If the disk surface or an asperity momentarily comes closer to the MR read element without touching it an increase in the cooling effect may occur in the MR head. The resulting change in resistance of the MR head material is the same as that produced by the head heating effects described above, but in the opposite direction.
Heating and cooling effects due to the texture of the medium surface are a class of thermal asperity, sometimes known as a “baseline wander” type of event. Herein both heating and cooling type events are referred to as “thermal asperities”.
Many efforts have been directed to reducing the effects of thermal asperities. Physically, efforts have been made to reduce the flash temperature that results from a collision between the head and the disk or a defect thereon. The flash temperature can be reduced by reducing the dynamic friction, the slider dimensions, and the interaction height. The latter requires smoother disks, fewer “glide escapes”, lower particle count and less contamination and debris. The industry trends of lowering the flying heights and increasing the slider-disk velocities however more than offset any improvements that can be expected from these countermeasures.
Other physical measures have been taken, as well, including designing the heads to have a high magnetic sensitivity, a low effective temperature coefficient, and a wide track width. Some proposals even include using a second, dummy sensor away from the air-bearing surface of the main sensor to provide a reference against which the output of the main sensor can be compared. Differentially sensed dual stripe heads were also used to partially cancel the thermal asperity effects. Other physical measures have been taken, as well.
In addition to the physical measures, electronic compensation measures in the read channel of the device have also been taken. Both “on-the-fly” and “re-try” types of counter measures have been advanced to lessen the impact of the thermal asperity effects. The on-the-fly methods in include “cloaking” methods in which the analog channel front-end processes the thermal asperity events such that they become invisible to the rest of the channel. The re-try methods include recovery steps that are implemented at the system level as part of a data recovery procedure.
In any event, the detection that a thermal asperity event has occurred is of importance. Many techniques for such detection have been advanced. In one technique, a flag is generated that signals that a thermal asperity event is occurring. In another technique, onset/magnitude detectors are used, sometimes in combination with a circuit or signal processor that subtracts predetermined electronically generated thermal asperity waveforms from the data signal.
One type of detector that has been used is a window detector, which detects the onset of a thermal asperity event as indicated by a rising edge in the output at the moment at which the input signal rises above or falls below a certain threshold. Another type detector is the envelope zero-crossing detector, which compares the positive signal envelope, the baseline, and the negative envelope. Envelope detectors rapidly follow a fast rising signal, but discharge slowly when following a falling signal.
To recover from the occurrence of a thermal asperity event, waveform-recovering detectors have been used in direct electronic restoration schemes that subtract the recovered event from the incoming data signal. Such event detectors must be fast and accurate.
Regardless of the manner by which the thermal asperity event is detected, however, the information that is obtained by previous techniques has been used to map the disk of the drive, and more particularly, to map areas of the drive that are affected by the thermal asperities thereon.
However, such information has been generally insufficient to map the drive in relation to the severity of the thermal asperity effects produced in the system. Such detailed map, according to the present invention, can be used, for example, to characterize the drive to particularly identify unusable areas thereof, and can, more particularly, be used to characterize the individual thermal asperities that occur during use of the disk so that regions of the disk can be evaluated depending upon the nature of the thermal asperities that occur within various regions of the disk.
What is needed, therefore, is a method for testing and mapping a disk drive surface for the existence of thermal asperity incident creating structures, imperfections, debris, or the like, to thereby enable thermal asperity abatement settings to be selectively tailored or adjusted to individualize the compensation needed for each particular identified thermal asperity causing structures, imperfections, debris, or the like. Furthermore, this characterization information can be fed back into the disk manufacturing and handling processes to help fine-tune, refine, improve, and control these processes.
SUMMARY OF THE INVENTION
In light of the above, therefore, it is an object of the invention to provide a method for testing and mapping a disk drive surface for the existence of thermal asperity incident creating structures, imperfections, debris, or the like.
It is

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for measuring and characterizing thermal... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for measuring and characterizing thermal..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for measuring and characterizing thermal... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3049430

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.