Apparatus for investigating flowable material and device for...

Radiant energy – Invisible radiant energy responsive electric signalling – Infrared responsive

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C073S863570

Reexamination Certificate

active

06236048

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to an apparatus for examining a flowable material.
BACKGROUND OF THE INVENTION
The expression “near-infra-red spectroscopy” is used to designate methods of measurements based upon the interaction between matter and electromagnetic radiation in the wavelength range from 700 to 2500 nm. The reason for using this expression is that it refers to the part of the infra-red wavelength range lying closest to the visual range of the spectrum (400 to 700 nm). In the literature, the expression “near-near-infra-red range” is used for electromagnetic radiation with wavelengths from 700 to 1200 nm.
Near-infra-red spectroscopy is used for determining components of various materials, e.g. in meat products. Meat consists substantially of water, protein and fat. Each type of chemical bond such as O—H, C—H, C═O, C—N, N—H, absorbs light at wavelengths characteristic for the molecule part concerned. The cause of the absorption is that two different atoms being bonded to each other function in the manner of an electric dipole taking energy from the electric and magnetic fields in the radiation, making the group of atoms concerned vibrate. Thus, a C═O bond in a triglyceride will absorb light at a wavelength, that is different from that absorbed by a C═O bond in a protein molecule. By measuring how much the light is attenuated by passing through a sample of meat at one of these characteristic wavelengths it is possible to determine the percentage of a component of the meat.
Measurements in the near-infra-red range may be carried out in two ways, either by passing light through the sample (near-infra-red transmission, NIT) or based on the reflection from the surface of the sample (near-infra-red reflection, NIR). In samples with a high water content, such as meat, NIT cannot be used when making measurements above 1300 nm, because the absorption by the water molecules is far too strong at longer wavelengths. With measurements based upon the reflection there is the disadvantage that they have to be carried out either on a free surface, which is not well-defined, or through a glass window. In the latter case, it cannot be avoided that fat on the comminuted meat adheres to the inside of the glass window, possibly causing erroneous measurement. Further, due to the small measuring volume, measurements based on reflection will not be as representative as NIT measurements.
Various analysis apparatus for examining materials by means of NIT spectroscopy are known. One of these apparatuses comprises a number of cups, in which a homogenized sample is placed. Then, the absorption of the sample is measured at a number of different wavelengths, and the content of components is computed on the basis of the absorption values having been found. The apparatus is extremely complicated to use. Thus, it is necessary to take a sample that is representative of the material to be examined, then the sample has to be homogenized, and finally the homogenized material has to be placed in the cups of the apparatus using great care. After this, the analysis may be carried out.
SUMMARY OF THE INVENTION
It is the object of the present invention to provide an apparatus for examining a flowable material, with which it is possible to exploit the advantages associated with spectroscopy, but which is not so complicated to use as the previously known apparatus referred to above. Preferably, the apparatus according to the invention should operate automatically without the need for the preparatory work referred to above (manual taking of a representative sample quantity, preparing a homogenized sample and placing in cups). The apparatus according to the present invention is characterized by comprising a tube having an opening for receiving material and an opening for discharging material as well as a tube segment adapted for making measurements, a measuring device placed adjacent said tube segment and having a light source on one side of the tube segment to transmit light into the segment and a light receiver on the opposite side of the segment to measure the effect upon the light of a material placed in the segment, the walls of the tube segment comprising the beam path between the light source and the light receiver being made of a material that is translucent or transparent for the wavelength range of the light to be examined, and a recording unit connected to said measuring device and adapted to record individual measurement values or sets of same for material having been placed in said tube segment.


REFERENCES:
patent: 4451152 (1984-05-01), Topol et al.
patent: 4563581 (1986-01-01), Perten
patent: 4627008 (1986-12-01), Rosenthal
patent: 4640614 (1987-02-01), Roberts et al.
patent: 5065416 (1991-11-01), Laurila et al.
patent: 5241178 (1993-08-01), Shields
patent: 6020588 (2000-02-01), Ditmarsen et al.
patent: 0 182 564 (1986-05-01), None
patent: 0 388 082 (1990-09-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for investigating flowable material and device for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for investigating flowable material and device for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for investigating flowable material and device for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2546189

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.