Apparatus for indicating strength of building structure, and...

Data processing: structural design – modeling – simulation – and em – Structural design

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C703S002000, C703S007000, C702S042000

Reexamination Certificate

active

06760691

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to designing of building structures, and more particularly to strength display devices for displaying strengths of building structural components of a building structure on a display screen thereof, and also to storage media for storing a program for displaying the strengths of the building structural components.
BACKGROUND OF THE INVENTION
For structural designing of the building structures, solid structural plans should be made in consideration of various forces acting on the building structures. For example, various loads, such as fixed load, superimposed load, snow load, wind load, seismic load etc., are applied continuously or temporarily on the building structures. Furthermore, various stresses, such as compressive stress, shearing stress, bending stress, tensile stress, etc., are created within the building structures in response to such applied loads.
In the structural designing of the building structures, configurations of the building structures, frame patterns, and positions and sizes of the building structural components are determined in compliance with safety standards regarding the various stresses induced by the described loads. That is, in the process of determining the positions and sizes of the building structural components in the structural designing of the building structures, it should be determined whether the building structural components have required strengths by computing the stresses of the building structural components that will be induced by the loads when these building structural components are actually placed at designated positions.
However, the results of the strength computation for the building structural components are obtained merely as computed values in the prior art. Therefore, although a level of safety that is satisfied by each structural component can be seen as numeric data, there is no visualized information showing a relationship between the actual structural component and its level of safety, and therefore, it is difficult to understand what level of safety is satisfied with the structural component arranged at a certain position within the building structure. Furthermore, it is difficult to see a level of safety of entire building structure by the displayed various numeric data. Furthermore, a value of each stress applied to each structural component can be changed based on load conditions. However, such changes in the values of the stresses are not easily understood with the displayed numeric data.
The present invention addresses these disadvantages. An objective of the present invention is to indicate strengths of the building structural components, which are determined based on the loads and the stresses acting on the building structural components, on displayed images of the building structural components on a display screen of a strength display device in an easily understandable manner.
SUMMARY OF THE INVENTION
To achieve the objective of the present invention, a strength display device for displaying strength of a building structure defined in claim
1
of the present invention includes a storage means for storing shape data and relative position data of building structural components of the building structure; a two-dimensional diagram constructing means for constructing a two-dimensional diagram, wherein the two-dimensional diagram constructing means first constructs a virtual three-dimensional model of assembled building structural components based on the shape data and the relative position data retrieved from the storage means and then constructs the two-dimensional diagram by projecting selected building structural components, which are selected from the building structural components of the virtual three-dimensional model, onto a plane; a display means for displaying the two-dimensional diagram constructed by the two-dimensional diagram constructing means on a display screen; a stress computing means for computing stress values of the building structural components based on stress computational data of the building structural components consistent with attributes of the building structural components; a selecting means for selecting a predetermined strength level display mode from a plurality of strength level display modes for the respective building structural components based on the stress values of the building structural components computed by the stress computing means, wherein the plurality of strength level display modes are provided for each of the building structural components arranged in the two-dimensional diagram; and a strength display means for displaying the predetermined strength level display modes of the building structural components selected by the selecting means on the display screen as the strength level display modes of the building structural components arranged in the two-dimensional diagram. With this arrangement, the virtual three-dimensional model of assembled building structural components is constructed based on the shape data and the relative position data of the building structural components retrieved from the storage means. Examples of the storage means for storing these shape data and the relative position data include memory elements such as semiconductor memories, magnetic discs and external storage devices such as flexible disks, CD-ROM disks, magneto-optical disks, and so on. The two-dimensional diagram, which is obtained by projecting the selected building structural components of the virtual three dimensional model onto the plane, is displayed on the display screen.
Each building structural component has different attributes depending on a type (e.g., columns or beams) of the building structural component, a shape of the building structural component, a position of the building structural component and so on. Therefore, the stress computational data of the building structural component vary from one to another. The stress computational data can be preinstalled in the storage device or can be newly inputted. Examples of the stress computational data include the shape data, load data, material data and so on. The stress values of the building structural components are computed by the stress computing means based on the stress computational data. Then, the strength display means selects a predetermined strength level display mode from a plurality of strength level display modes for the respective building structural components of the two-dimensional diagram displayed on the display screen based on the stress values of the building structural components.
Various colors can be use as the strength level display modes. For example, if the stress value of the building structural component is relatively small (i.e., the building structural component has relatively high safety level), any cold color such as blue giving safe impression can be used to indicate the building structural component. If the stress value of the building structural component is relatively high (i.e., the building structural component has relatively low safety level), any warm color such as red giving dangerous impression can be used to indicate the building structural component. Other than the various colors, any display modes such as various types of lines or various types of shades can be used as the strength level display modes.
Furthermore, as defined in claim
3
, the present invention provides a storage medium that stores a program for displaying strength of a building structure on a display screen through a computer, wherein the program constructs a virtual three-dimensional model of assembled building structural components of the building structure based on shape data and relative position data of the building structural components and displays a two-dimensional diagram on the display screen, wherein the two-dimensional diagram is obtained by projecting selected building structural components, which are selected from the building structural components of the virtual three-dimensional model, onto a virtual projecting plane located at a prede

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for indicating strength of building structure, and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for indicating strength of building structure, and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for indicating strength of building structure, and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3200539

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.