Apparatus for generation of a linear arc discharge for plasma pr

Chemical apparatus and process disinfecting – deodorizing – preser – Chemical reactor – With means applying electromagnetic wave energy or...

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

42218605, B01J 1912

Patent

active

059086025

DESCRIPTION:

BRIEF SUMMARY
FIELD OF THE INVENTION

The present invention relates to an apparatus for generation of a linear arc discharge for plasma processing, particularly for surface processing of solid substrates.


BACKGROUND OF THE INVENTION

Because of high ion density of produced plasmas the arc discharges represent very powerful tools in the plasma processing technology. Arc sources are used for generation of reactive plasmas in a working gas, they can produce plasma which contains particles of sputtered and/or evaporated electrodes, or chemical compounds of these particles with the working gas. Properties of arc discharges depend on energies and densities of the generated ions and electrons, which are affected by the pressure of the working gas. A wide variety of gas plasmatrons use arc discharges at atmospheric pressures, because of simple arrangement without vacuum pumps. However, generation of an arc based on a non-isothermal plasma with controllable ion energies requires low gas pressures. Different types of arc discharges are used for this purpose. Most of them are generated by direct current (DC), high power generators. A typical low pressure source for plasma processing is a cascaded arc (European patent 0297637) which produces a flow of an active plasma in a working gas. Metal ions in plasmas are generated usually from an electrode which is sputtered and/or evaporated by the arc discharge, see D. M. Sanders et al., IEEE Trans. Plasma Sci. 18, 883-894 (1990). The eroded electrode is usually a planar cathode in the DC arc circuit with an electrically grounded anode. The cathode is water cooled and the content of undesirable micro droplets--"macroparticles" present in the evaporated cathode material is reduced by steering the cathode spot motion on the cathode surface. In recent cathodic arc sources the macroparticles are filtered by an auxiliary magnetic field filter (U.S. Pat. No. 5,279,723). The content of macroparticles is usually lower when the consumable electrode is heated up to melting temperature. It is also possible to utilize arc arrangements with a consumable anode instead of the cathode, see e.g. M. Mausbach et al., Vacuum 41, 1393-1395 (1990). Cold consumable cathodes are of limited size and require the magnet filtering, which limits possibility of scaling these sources up. Consumable electrodes containing liquid metal crucibles can be installed only in restricted positions. Most arc sources require an additional switch to start the discharge.
A generation of an arc discharge is very efficient in hollow cathodes. The principle of the hollow cathode gas discharge generated by a direct current has been reported first by F. Paschen, Ann. Physik 50, 901-940 (1916). From that time a great number of investigations about this discharge have been reported, see reviews e.g. J-L. Delcroix and A. R. Trindade, Advances in Electronics and Electron Phys. 35, 87-190 (1974), M. E. Pillow, Spectrochimica Acta 36B, no.8, 821-843 (1981), and R. Mavrodineanu, J. Res. Nat. Bureau of Standards 89, no. 2, 143-185 (1984). In DC hollow cathodes an arc discharge can be generated at high DC power. The wall of the hollow cathode must be heated up to high temperatures strongly enhancing thermionic emission of electrons. Moreover, a substantial portion of ions is produced by an erosion of the hollow cathode surface. At these conditions the DC current in the arc circuit grows up rapidly, while the voltage at the cathode falls down to values of the order of the minimum ionizing or minimum exciting potential of the gas or metal vapor. The arc is a self-sustained discharged capable of supporting large currents by providing its own mechanism of electron emission from the negative electrode (see "Handbook of Plasma Processing Technology" ed. by S. Rossnagel et al., Noyes Publ. 1990, Chapter 18 by D. Sanders). Until this condition is not reached the discharge in the hollow cathode cannot be assumed as an arc. It is rather a normal or anomalous glow, even if some parts of the cathode walls are hot, particularly in cathodes fabricated from a

REFERENCES:
patent: 3562141 (1971-02-01), Morley
patent: 4521286 (1985-06-01), Horwitz
patent: 4767641 (1988-08-01), Kieser et al.
patent: 5019117 (1991-05-01), Nakamura et al.
patent: 5185132 (1993-02-01), Horiike et al.
patent: 5279723 (1994-01-01), Falabella et al.
Patent Abstracts of Japan, vol. 15, No. 211, C-836, abstract of JP, A, 3-61374 (Idemitsu Petrochem Co. Ltd0, Mar. 18, 1991.
Coating Technology Based on the Vacuum Arc--A Review, David M. Sanders et al., IEEE Transactions on Plasma Science, vol.18, No. 6, Dec. 1990, pp. 883-894.
Cu and Zn films produced with an anodic vacuum arc, Vacuum, vol. 41, Nos. 4-6, Great Britain, 1990, pp. 1393 to 1395, M. Mausbach, et al.
2. Bohrs Heliumlinien (first report about hollow cahtodes), Ann. Physik 50, F. Paschen, pp. 901-940.
Hollow Cathode Arcs, Jean-Loup Delcroix, Advances in Electronics and Electron Physics 35, 1974, pp. 87-190.
A critical review of spectral and related physical properties of the hollow cathode discharge, M. E. Pillow, Spectrochimica Acta, vol. 36B, 1981, pp. 821-843.
Hollow Cathode Discharges, Radu Marvodineanu, Journal of Research of the National Bureau of Standards, vol. 89, No. 2, Mar.-Apr. 1984, pp. 143-185.
Handbook of Plasma Processing Technology, Stephen M. Rossnagel, et al., Noyes Publications, Park Ridge, New Jersey, U.S.A., 1990, Chapter 18, pp. 419-446.
Hollow Cathode Reactive Sputter Etching--A New High-Rate Process, Chris M. Horwitz, American Institute of Physics, Appl. Phys. Lett. vol. 43, Nov. 15, 1983, pp. 977-979.
New Way FCR High-Rate a-Si Deposition, Ladislav Bardos, et al., Journal of Non-Crystalline solids, 97 & 98, North-Holland, Amsterdam, 1987, pp. 281-284.
Rf multipolar plasma for braod and reactive ion beams, C. Lejeune, et al,, Vacuum, vol. 36, Nos. 11 & 12, 1986, Great Britain, pp. 837-840.
Plasma jet dry etching using different electrode configurations, A.M. Barklund, et al., J. Vac. Sci, Technol, A9, May/Jun. 1991, American Vacuum Society, pp. 1055-1057.
Removal of Oil from metals by plasma techniques, A. Belkind, et al., Surface and Coatings Technology, 68/69, Elsevier Science S.A., 1994 pp. 804-808.
The Effect of Magnetic Fields on Hollow Cathode Discharges, Karl H. Schoenbach, Physical Electronics Research Institute, Old Dominion University, Norfolk, VA, Proceedings III, ICCPIG XXI, Ruhr-Universitat Bochum, Sep. 19-24, 1993, pp. 287-296.
Abnormal High Rate Deposition of TiN by the Radio Frequency Plasma Jet System, H. Barankova, et al., Proceedings of the Tenth Symposium on Plasma Processing, Dielectric Science and Technology and Electronics Divisions, Proceedings vol. 94-20, The Electrochemical Society, Inc., Pennington, N.J., pp. 580-589. 1994.
"High Speed Pipe Inner Coating using magnetron hollow-cathode discharge in a magnetic field", H. Kawasaki, et al., Materials Science and Engineering, A140, 1991, Elsevier Sequoia, The Netherlands, pp. 682-686.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for generation of a linear arc discharge for plasma pr does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for generation of a linear arc discharge for plasma pr, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for generation of a linear arc discharge for plasma pr will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-953394

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.