Apparatus for generating microbubbles while mixing an...

Fluid handling – Systems – Multiple inlet with single outlet

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C137S896000, C366S175200, C366S336000

Reexamination Certificate

active

06279611

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to apparatus for generating microspheres or microbubbles to enhance the blending of a fluid with a mainstream liquid.
BACKGROUND OF THE INVENTION
The increasing amount of chemicals introduced into water systems in homes and small businesses has been identified as one of the largest sources of environmental pollution and this practice continues to grow unabated. When chemicals are introduced into a closed residential water system, they are most frequently discharged directly into an overtaxed municipal waste treatment plant after a single use. Similarly, when chemicals are added in an open residential water system, for example an insecticide which is added to water by mixing through a gardening hose, most of the chemicals will eventually flow into the water table or catch basin to be recycled into the municipal water system.
There are many prior-art devices used for mixing or otherwise dispensing liquid chemicals in a residential or business water system. Most of these devices are used to dispense liquid soap, shampoo, insecticide, fertilizer or other additives in a stream of water by means of the force of the water under pressure through a faucet, shower head, garden hose, or the like. Some devices allow a user to choose between a variety of additives to be dispensed into the stream of water. Others allow the user to select a dilution ratio of an additive to be dispensed into the water stream. Still other devices are adaptable for use in a wide variety of residential and commercial applications including bath, kitchen, and garden.
All applications of the prior-art devices are primarily concerned with achieving a higher level of convenience and ease of use in dispensing additives in water. The prior art does not, however, seek to enhance the efficacy of an additive in order to allow reduction of the ratio of additive otherwise required to accomplish a given task, thus reducing the gross amount discharged into the municipal waste disposal system or the ground.
The present invention distinguishes itself from the aforementioned prior art in that it is capable of increasing the efficacy of the additive dispensed in the water, thus allowing a reduction in the gross amount of additive used to accomplish a given task. This increase of efficacy of an additive is made possible by apparatus in the mixing device that generates microspheres of the additive in the water stream for greater surface contact of the additive in the water, particularly in situations where the two fluids being mixed are incompatible or otherwise mutually repellent, such as oil and water. It has been demonstrated that microsphere technology accomplishes the mixing of such incompatible liquids, without the use of emulsifiers or other binding agents.
The present invention accomplishes this increase of efficacy by exploiting incipient cavitation nuclei inherent in liquids and their unique properties upon implosion, including shockwave and ultrasound generation. Microspheres, which are created when two liquids are combined have a mean diameter of under 100&mgr; (0.1 mm). The prior art has demonstrated that liquids in a micron state will provide dramatically accelerated mutual physical and chemical interaction with each or other and often attain a 30% or higher reduction in ratio of additive required to attain a given result.
As shown in the prior art, microsphere generation arises from the inherent presence of incipient cavitation nuclei in liquids. Cavitation is the process whereby microsphere form, grow, and collapse due to pressure differentials created in a liquid. Tremendous local energy is released when a microsphere collapses which causes a disproportionately increased rate of physical and chemical interaction between molecules of any additive and its surrounding liquid. This then greatly enhances the efficacy of the additive in the mixture.
There are four basic methods of inducing cavitation: hydrodynamic, acoustic, optic and particle. The present invention makes use of a hydrodynamic method produced by pressure variations in a flowing liquid due to the geometry of the system. Cavitation occurs when the net pressure of the flowing liquid becomes approximately equal to the vapor pressure of the liquid.
Despite the fact that cavitation generation of microsphere and the generation of the associated phenomena of ultrasound and shockwave has long been held to be particularly detrimental in hydrodynamic systems, the commercial, medical, and scientific communities have nonetheless begun to successfully exploit beneficial aspects of this technology to dramatically improve physical and chemical reactions as well as permit previously unattainable reactions and emulsions. A wide variety of methods have been developed by those communities to generate microsphere including electrically generated ultrasonic vibrations, ceramic contact plates, cross-membranes, certain venturi configurations with external pumps, small scale oxygen injection apparatuses, and microbiological reactions, among others.
Commercial communities have utilized microbubble technology to sharply improve chemical and physical reactions such as mixing, heat exchange, flocculation, oxidation and reduction in fields as diverse as synthetic gas production, cancer imaging, wastewater treatment and mineral processing. Scientific and medical communities have utilized microbubble technology to open new lines of research in cold fusion, non-invasive surgical procedures, and transdermal therapy, among others. However, the means used by those communities for producing microbubbles and utilizing the beneficial properties resulting therefrom cannot be easily adapted to home use for a variety of reasons. For example, a pump or electrical device is usually involved which gives rise to concerns about safety, size, and cost that would preclude home use. Being generally highly sophisticated in nature, these systems for production of microbubbles present difficulties not easily overcome in the areas of mass-market manufacturing, installation and operation and thus are not currently available for home or other uses requiring low cost production for mixing a fluid gas or liquid with a mainstream liquid.
What has not been generally appreciated by the prior art is that hydrodynamic cavitation per se is not necessarily a negative externality that should always be avoided altogether in hydrodynamic systems. What the present invention seeks to exploit is that in hydrodynamic cavitation in the mainstream of a liquid, the liquid system itself can be utilized to generate microsphere and its associated phenomena to achieve a variety of benefits, one of which is the reduction of the ratio of an additive fluid to the mainstream liquid in order to reduce the additive needed in the mainstream liquid.
The present invention can achieve mixing at the micron level without altering the infrastructure of a residence or small business through the use of microbubbles. Because the present invention can be powered solely by the pressure of a mainstream liquid flowing from a source and utilizes no electricity, pump, or other mechanical devices, the power of a municipal water system is sufficient for the present invention to attain mixing of fluids in a mainstream flow of water at a micron level, such as detergents or chlorine, despite pressures as low as 25 PSI and low flow rates of 2.25 to 5.0 gallons per minute. Certain types of industrial static mixers, e.g., U.S. Pat. No. 4,270,576 (Takeda), operate with electricity, pump, or other external means and therefore cannot be self-contained for insertion in a residential or small business water system, such as in a clothing or dish washing system.
SUMMARY OF THE INVENTION
In accordance with the present invention, apparatus for mixing a liquid with a liquid of a primary stream comprises a section of pipe or tube attachable to a source of mainstream liquid under pressure. The defined space in the section of tube is provided with a constriction device between its inlet and outlet for the purpose of inc

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for generating microbubbles while mixing an... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for generating microbubbles while mixing an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for generating microbubbles while mixing an... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2484204

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.