Chemistry: molecular biology and microbiology – Apparatus – Bioreactor
Reexamination Certificate
1994-11-30
2002-07-16
Ponnaluri, Padmashri (Department: 1627)
Chemistry: molecular biology and microbiology
Apparatus
Bioreactor
C435S091500, C435S091500, C422S131000, C436S518000, C530S335000
Reexamination Certificate
active
06420169
ABSTRACT:
COPYRIGHT NOTICE
A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure exactly as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
MICROFICHE APPENDIX
This specification includes microfiche appendices 1, 2 and 3, having 5 sheets with 348 frames.
BACKGROUND OF THE INVENTION
The present invention relates to the field of polymer synthesis. More specifically, the invention provides a reactor system, a masking strategy, photoremovable protecting groups, data collection and processing techniques, and applications for light directed synthesis of diverse polymer sequences on substrates.
Prior methods of preparing large numbers of different polymers have been painstakingly slow when used at a scale sufficient to permit effective rational or random screening. For example, the “Merrifield” method (
J. Am. Chem. Soc
. (1963) 85:2149-2154, which is incorporated herein by reference for all purposes) has been used to synthesize peptides on a solid support. In the Merrifield method, an amino acid is covalently bonded to a support made of an insoluble polymer. Another amino acid with an alpha protecting group is reacted with the covalently bonded amino acid to form a dipeptide. After washing, the protecting group is removed and a third amino acid with an alpha protecting group is added to the dipeptide. This process is continued until a peptide of a desired length and sequence is obtained. Using the Merrifield method, it is not economically practical to synthesize more than a handful of peptide sequences in a day.
To synthesize larger numbers of polymer sequences, it has also been proposed to use a series of reaction vessels for polymer synthesis. For example, a tubular reactor system may be used to synthesize a linear polymer on a solid phase support by automated sequential addition of reagents. This method still does not enable the synthesis of a sufficiently large number of polymer sequences for effective economical screening, i.e., for purposes of drug discovery.
Methods of preparing a plurality of polymer sequences are also known in which a container encloses a known quantity of reactive particles, the particles being larger in size than foramina of the container. The containers may be selectively reacted with desired materials to synthesize desired sequences of product molecules. As with other methods known in the art, this method cannot practically be used to synthesize a sufficient variety of polypeptides for effective screening.
Other techniques have also been described. These methods include the synthesis of peptides on 96 plastic pins which fit the format of standard microtiter plates. Unfortunately, while these techniques have been somewhat useful, substantial problems remain. For example, these methods continue to be limited in the diversity of sequences which can be economically synthesized and screened.
From the above, it is seen that an improved method and apparatus for synthesizing a variety of chemical sequences at known locations is desired.
SUMMARY OF THE INVENTION
Methods, apparatus, and compositions for synthesis and use of diverse polymer sequences on a substrate are disclosed, as well as applications thereof.
In one preferred embodiment, linker molecules are provided on a substrate. A terminal end of the linker molecules is provided with a reactive functional group protected with a photoremovable protective group. Using lithographic methods, the photoremovable protecting group is exposed to light and removed from the linker molecules in the first selected regions. The substrate is then washed or otherwise contacted with a first monomer that reacts with exposed functional groups on the linker molecules. In a preferred embodiment, the monomer is an amino acid containing a photoremovable protecting group at its amino or carboxy terminus and the linker molecule terminates in an amino or carboxy acid group bearing a photoremovable protective group.
A second set of selected regions is, thereafter, exposed to light and the photoremovable protecting group on the linker molecule/protected amino acid is removed at the second set of regions. The substrate is then contacted with a second monomer containing a photoremovable protecting group for reaction with exposed functional groups. This process is repeated to selectively apply monomers until polymers of a desired length and desired chemical sequence are obtained. Photolabile groups are then optionally removed and the sequence is, thereafter, optionally capped. Side chain protective groups, if present, are also removed.
By using the lithographic techniques disclosed herein, it is possible to direct light to relatively small and precisely known locations on the substrate. It is, therefore, possible to synthesize polymers of a known chemical sequence at known locations on the substrate. The general version of this technique is termed Very Large Scale Immobilized Polymer Synthesis (VLSIPS™).
The resulting substrate will have a variety of uses including, for example, screening large numbers of polymers for biological activity. To screen for biological activity, the substrate is exposed to one or more receptors such as an antibody, whole cells, receptors on vesicles, lipids, or any one of a variety of other receptors. The receptors are preferably labeled with, for example, a fluorescent marker, radioactive marker, or a labeled antibody reactive with the receptor. The location of the marker on the substrate is detected with, for example, photon detection or autoradiographic techniques. Through knowledge of the sequence of the material at the location where binding is detected, it is possible to quickly determine which sequence binds with the receptor and, therefore, the technique can be used to screen large numbers of peptides. Other possible applications of the inventions herein include diagnostics in which various antibodies for particular receptors would be placed on a substrate and, for example, blood sera would be screened for immune deficiencies. Still further applications include, for example, selective “doping” of organic materials in semiconductor devices, i.e., the introduction of selected impurities into the device, and the like.
According to one aspect of the invention, an improved reactor system for synthesis of diverse polymer sequences on a substrate is provided. According to this embodiment the invention provides for a reactor for contacting reaction fluids to a substrate; a system for delivering selected reaction fluids to the reactor; a translation stage for moving a mask or substrate from at least a first relative location relative to a second relative location; a light for illuminating the substrate through a mask at selected times; and an appropriately programmed digital computer for selectively directing a flow of fluids from the reactor system, selectively activating the translation stage, and selectively illuminating the substrate so as to form a plurality of diverse polymer sequences on the substrate at predetermined locations.
The invention also provides a technique for selection of linker molecules using the VLSIPS™ synthesis technique. According to this aspect of the invention, the invention provides a method of screening a plurality of linker polymers for use in binding affinity studies. The invention includes the steps of forming a plurality of linker polymers on a substrate in selected regions, the linker polymers are formed by the steps of recursively: (1) on a surface of a substrate, irradiating a portion of the selected regions to remove a protecting group, and contacting the surface with a monomer; (2) contacting the plurality of linker polymers with a ligand; and (3) contacting the ligand with a labeled receptor.
According to another aspect of the invention, improved photoremovable protecting groups are provided. According to this aspect of the
Fodor Stephen P.A.
Hoeprich, Jr. Paul D.
Pirrung Michael C.
Read J. Leighton
Stryer Lubert
Affymetrix Inc.
Ponnaluri Padmashri
Townsend and Townsend / and Crew LLP
LandOfFree
Apparatus for forming polynucleotides or polypeptides does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus for forming polynucleotides or polypeptides, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for forming polynucleotides or polypeptides will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2865157