Apparatus for flow detection, measurement and control and...

Communications: electrical – Condition responsive indicating system – Specific condition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C340S008100, C073S251000

Reexamination Certificate

active

06741179

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to the fields of flow detection, measurement and control. The invention also relates to fire suppression systems, and, in particular, to multi-purpose piping systems for fire protection in structures and flow elements related thereto.
2. Description of the Prior Art
Practically any system where fluid flows in a conduit may use flow measurement devices. There are as many different kinds of flow measurement devices as there are systems where fluids flow in a conduit (such as a typical round pipe). For example, it is well known that there is a pressure drop across an orifice plate, and that this pressure drop can be used to determine the fluid flow through the pipe. The pressure drop is proportional to the velocity of the fluid in the pipe. As another example, a positive displacement device may be placed in a conduit, which directly measures the volume of fluid flowing there through. From the known volume measured by the positive displacement device, the velocity of the fluid in the pipe can be determined. Each type of flow measurement device has its strengths and weaknesses, and may be applicable to one system, while not being suitable for another.
Check valves (single and double acting) are also widely used in systems where fluids flow in conduits. The purpose of a check valve is to allow flow in one desired direction, but prevent flow in the opposite undesired direction. Existing check valves often use a moving seat, which is forced open by fluid flowing in the desired direction, but which moving seat is sealingly forced against an annular shoulder, preventing flow in the undesired, opposite direction.
It is well known to use electronic sensor means to transmit a signal generated by a flow measurement device to a read out or alarm means. The electronic output may be generated in response to a pressure transducer or the like. There are a myriad of ways to generate an electronic signal proportional to flow of a fluid in a conduit. As with our orifice plate noted above, the differential pressure is proportional to the flow in the conduit. Therefore, a differential pressure transducer exposed to the up stream and down stream fluids would produce an output electrical signal proportional to the flow of fluid through the conduit. In one type of paddle flow switch, the volume between the paddles is known, and a signal is generated indicating the number of revolutions per unit time of the paddle, thus allowing calculation of the flow velocity. Vane-type paddle flow switches are typically used in the fire protection industry, but vane-type paddle flow switches are generally not capable of measuring flow with any degree of accuracy. Gems® Sensors markets several types of flow switches in their catalogues, which switches use Reed switch technology to measure flow. These devices are equipped with a magnet which is displaced by liquid flow to actuate a hermetically-sealed Reed switch isolated within the unit body of the switch. A positive spring-return de-actuates the switch when flow decreases. The pressure drop is low since the flow sensing elements moves out of the flow path after switch actuation. With only one moving part - the shuttle, paddle, or piston - Gems Sensors' flow switches are alleged to be inherently reliable. There are no bellows, diaphragms, or mechanical linkages to wear or get out of adjustment. Gems Sensors' FS-200 incorporates a magnet-equipped shuttle, which is displaced by fluid flow, actuating the hermetically sealed Reed switch. Gems Sensors also provides options vane bypass, which can be opened to allow additional flow to pass through the sensor before the Reed switch is activated. This optional vane device is externally adjustable with a blade screwdriver, for simple adjustment of the amount of flow required to actuate the Reed switch. Gems Sensors' model FS-10798 incorporates a piston which provides an alternative flow path for fluid. In the main flow path, there is a vane which can be adjusted to vary the amount of fluid flow which is required to move the piston a sufficient distance to activate the magnetic switch. The piston is equipped, of course, with a magnet, which activates an external Reed switch when it is displaced sufficiently. Therefore, there is no flow through the alternative piston path until it is displaced sufficiently to allow fluid to flow through an outlet port in the cylinder wall in which the piston moves.
It is well known to provide a dual check back-flow preventer for use in various types of systems. For example, Watts Industries, Inc, provides a Series 007 Double Check Valve Assembly. The Watts device has two moving checks in series, which are displaced by flow in a desired direction, but which positively seat to prevent flow in the undesired direction. As the checks are displaced by flow in the proper direction, flow passes out around the periphery of the checks. The checks are contained within a cage assembly, which allows passage of fluid between the legs thereof.
It is well known to provide a bypass means for allowing fluid flow around a restriction, in certain circumstances. For example, as disclosed in the Parent Applications for use in a multi-purpose piping system, it may be desirable to divert flow around a water softener where the demand for water in the residence for fire protection is greater than is able to flow through the water softener. As another example, in a chemical process, chemicals may be passed through a reactor unit. However, should the reactor become plugged or otherwise unduly restrict the flow, it may be desirable to bypass the reactor so as to prevent damage to the reactor vessel and/or a process upset. In these circumstances, it is necessary to have a bypass means which can divert flow around the flow element causing the pressure drop.
In most fluid flow systems, each of the above noted flow elements (flow measurement, check valve, bypass means) is a separate fitting which must be placed in the fluid system. It is often desirable to combine as many of the above noted functions into one device engineered for a particular purpose. The benefits of a combination of multiple devices, for example the flow meter, check valve, and means for converting a fluid flow to an electronic out put signal, are: a reduced number of devices reduces complexity, cost, and difficulty of installation of a fluid flow system.
It is also well known to provide a means for enunciating an alarm when water flows through a fire protection system. Typical commercial fire protection systems do not have significant water flow there through unless a sprinkler head is activated by a fire. Thus, the typical commercial systems need only detect whether or not flow is present, and if so, an alarm must be enunciated. That is why vane-type paddle flow switches are generally acceptable for commercial fire protection systems.
U.S. Pat. No. 6,081,196, issued to Young on Jun. 27, 2000, for Apparatus and Method for Multipurpose Residential Water Flow Fire Alarm disclosed means for using the same piping for both domestic and fire protection needs. The method provided for a flow detection and measurement means which is capable of distinguishing typical domestic flow from fire protection flow caused by the operation of one or more sprinkler heads. The ability to distinguish domestic flows from fire protection was based on the different flow regimes between fire protection and domestic uses.
The National Fire Protection Association (“NFPA”) has established standards for the design and operation of multi-purpose residential fire sprinkler systems. The standard is known as NFPA 13D, 1999 Ed. It defines a multi-purpose piping system (“MPS”) as “[a] piping system within dwellings and manufactured homes intended to serve both domestic and fire protection needs.”
Typical commercial fire sprinkler systems utilize a water flow detector to provide an alarm means. When a flow of sufficient, minimal, volume is detected, typical commercial systems indicate an alarm con

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for flow detection, measurement and control and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for flow detection, measurement and control and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for flow detection, measurement and control and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3222946

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.