Apparatus for evaluating plane strain stretch formability, and m

Measuring and testing – Specimen stress or strain – or testing by stress or strain... – By loading of specimen

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

73834, G01N 1900

Patent

active

055071899

DESCRIPTION:

BRIEF SUMMARY
FIELD OF THE INVENTION

The present invention relates to an apparatus and a method for evaluating the stamping formability for thin steel sheets used in manufacturing automotive bodies. In particular, the present invention relates to an apparatus and a method for evaluating the stretch formability which refers to the fracture limit under the plane strain mode which occupies the greater part of the fractures occurring during the stamping process for the automotive steel sheets.


BACKGROUND OF THE INVENTION

Generally, the manufacturing process for the automotive body includes stamping, welding, coating and assembling. In the stamping process which is the first step of the manufacturing process, drawing, trimming and flanging are carried out by passing through 3 to 4 stamping dies. The formation defects such as fractures, buckling and the like which occur during the drawing step give influence to the later processes. As a result, the quality of the final products is deteriorated, and the productivity is lowered, thereby leading to the increase of the manufacturing cost. The drawing step of the stamping process, which plays the critical role in forming the automotive body will be described referring to the attached drawings, for the case where a single acting press is used. As shown in FIG. 1, a steel sheet 5 to be subjected to a formation is inserted into between a lower die 3 and an upper die 1 on which a draw bead 4 is installed. Then the upper die 1 is lowered, so that it should give a proper force to the steel sheet by the help of the reaction force of a cushion 6 which supports the lower die 3. At the same time, as shown in FIG. 2, the lower die 3 is lowered down to the depth of the panel to be formed. As the lower die 3 is lowered, the steel sheet 5 which is positioned between the upper die 1 and the lower die 3 passes through the draw bead 4 to be put into the upper die 1, so that the steel sheet should be formed in accordance with the shape of a punch 2, thereby completing the stamping process. However, as shown by the portion A of FIG. 2, fractures can occur on the wall of the formed panel during the drawing process. The occurrence of such fractures is very sensitively affected by the mechanical properties of the steel sheet, the design of the dies, and other stamping conditions.
The deformation which occurs to the steel sheet during the stamping process includes stretching and drawing deformations, and, in the former, the material is not permitted to be mobilized at the flange portion by the lock bead, while, in the latter, the mobilization of the material is accompanied in the flange portion. Meanwhile, the deformation mode in which the reduction of the thickness of the steel sheet occurs in connection with the fractures during the stamping process includes a bi-axial tensile deformation mode, and another deformation mode in which the deformation in one-direction is inhibited, and the deformation in the perpendicular direction exists. About 75-90% of the fractures which occur during the stamping process belong to a plane strain mode in which the deformation in one direction is zero. Therefore, in order to prevent fractures during the stamping process and to forecast the stamping formability, it is desirable to evaluate the stamping formability, i.e., the formability limit of the steel sheet under the plane strain mode.
There is a conventional method for evaluating the formability under the plane strain mode without considering the frictions between the die and the steel sheet. According to this conventional method, the steel sheet is formed into a tensile test piece having a shape such that the test specimen has multi-stepped widths. Then a tensile test is carried out to realize a plane strain mode, and then, the formability under the plane strain state is evaluated based on the tensile properties such as the elongation to the fracture. This conventional method cannot take into account the frictions occurring between the die and the steel sheet due to the surface condition of the steel sheet. Fur

REFERENCES:
patent: 2645937 (1953-07-01), Kalmusky et al.
patent: 3319462 (1967-05-01), Ostrowski
patent: 4099408 (1978-07-01), Ludwigson

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for evaluating plane strain stretch formability, and m does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for evaluating plane strain stretch formability, and m, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for evaluating plane strain stretch formability, and m will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-318206

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.