Optics: measuring and testing – With plural diverse test or art
Patent
1997-07-03
1999-11-02
Font, Frank G.
Optics: measuring and testing
With plural diverse test or art
356376, 356369, 356364, G01N 2100
Patent
active
059780746
ABSTRACT:
An apparatus for characterizing multilayer samples is disclosed. An intensity modulated pump beam is focused onto the sample surface to periodically excite the sample. A probe beam is focused onto the sample surface within the periodically excited area. The power of the reflected probe beam is measured by a photodetector. The output of the photodetector is filtered and processed to derive the modulated optical reflectivity of the sample. Measurements are taken at a plurality of pump beam modulation frequencies. In addition, measurements are taken as the lateral separation between the pump and probe beam spots on the sample surface is varied. The measurements at multiple modulation frequencies and at different lateral beam spot spacings are used to help characterize complex multilayer samples. In the preferred embodiment, a spectrometer is also included to provide additional data for characterizing the sample.
REFERENCES:
patent: 4468136 (1984-08-01), Murphy et al.
patent: 4513384 (1985-04-01), Rosencwaig
patent: 4521118 (1985-06-01), Rosencwaig
patent: 4522510 (1985-06-01), Rosencwaig et al.
patent: 4579463 (1986-04-01), Rosencwaig et al.
patent: 4632561 (1986-12-01), Rosencwaig et al.
patent: 4634290 (1987-01-01), Rosencwaig et al.
patent: 4636088 (1987-01-01), Rosencwaig et al.
patent: 4710030 (1987-12-01), Tauc et al.
patent: 4795260 (1989-01-01), Schuur et al.
patent: 4854710 (1989-08-01), Opsal et al.
patent: 4999014 (1991-03-01), Gold et al.
patent: 5042951 (1991-08-01), Gold et al.
patent: 5074669 (1991-12-01), Opsal
patent: 5159412 (1992-10-01), Willenborg et al.
patent: 5181080 (1993-01-01), Fanton et al.
patent: 5228776 (1993-07-01), Smith et al.
patent: 5408327 (1995-04-01), Geiler et al.
patent: 5657754 (1997-08-01), Rosencwaig
J.T. Fanton & G.S. Kino, "High-sensitivity laser probe for photothermal measurements," Appl. Phys. Lett., Jul. 13, 1987, vol. 51, No. 2, pp. 66-68.
J.T. Fanton, A. Kapitulnik, B.T. Khuri-Yakub & G.S. Kino, "Low-Temperature Photothermal Measurements of High T.sub.c Superconductors," The Review of Progress in Quantitative Nondestructive Evaluation (Reprint G.L. Report No. 4728 [Aug. 1990]), Presented Jul. 15-20, 1990, 8 pages in length.
B.C. Forget, I. Barbereau & D. Fournier, "Electronic diffusivity measurement in silicon by photothermal microscopy," Appl. Phys. Lett., Aug. 19, 1996, vol. 69, No. 8, pp. 1107-1109.
J.T. Fanton, J. Opsal, D.L. Willenborg, S.M. Kelso & Al. Rosencwaig, "Multiparameter measurements of thin films using beam-profile reflectometry," Journal of Applied Physics, Jun. 1, 1993, vol. 73, No. 11, pp. 7035-7040.
A. Rosencwaig, "Depth Profiling of Integrated Circuits with Thermal Wave Electron Microscopy," Electronic Letters, Nov. 20th, 1980, vol. 16, No. 24, pp. 928-930.
J. Opsal & A. Rosencwaig, "Thermal and plasma wave depth profiling in silicon," Appl. Phys. Lett., Sep. 1, 1985, vol. 47, No. 5, pp. 498-500.
A. Rosencwaig, Chapters 17, 18, and 21 Photoacoustics and Photoacoustic Spectroscopy, 1980, pp. 207-244 (Chapts. 17-18) and 270-284 (Chapt. 21).
X.D. Wu, G.S. Kino, J.T. Fanton & A. Kapitulnik, "Photothermal microscope for high-T.sub.c superconductors and charge density waves," Rev. Sci. Instrum., Nov. 1993, vol. 64, No. 11, pp. 3321-3327.
A.M. Mansanares, T. Velinov, Z. Bozoki, D. Fournier & A.C. Boccara, "Photothermal microscopy: Thermal contrast at grain interface in sintered metallic materials," J. Appl. Phys., vol. 75 (7), Apr. 1, 1994, pp. 3344-3350.
A.M. Mansanares, J.P. Roger, D. Fournier & A.C. Boccara, "Temperature field determination of InGaAsP/InP lasers by photohermal microscopy: Evidence for weak nonradiative processes at the facets," Appl. Phys. Lett., vol. 64 (1), Jan. 3, 1994, pp. 4-6.
G. Langer, J. Hartmann & M. Reichling, "Thermal conductivity of thin metallic films measured by photothermal profile analysis," Rev. Sci. Instrum., vol. 68 (3), Mar. 1997, pp. 1510-1513.
G. Savignat, P. Boch, L. Pottier, D. Vandembroucq & D. Fournier, "Non-destructive characterization of refractories by mirage effect and photothermal microscopy," Journal De Physique IV, Colloque C7, supplement au Journal de Physique III, vol. 3, Nov. 1993, pp. 1267-1272.
B.C. Forget, I. Barbereau, D. Fournier, S. Tuli & A.B. Battacharyya, "Electronic diffisivity measurement in silicon by photothermal microscopy," Appl. Phys. Lett., vol. 69 (8), Aug. 19, 1996, pp. 1107-1109.
M.B. Suddendorf, M. Liu & M.G. Somekh, "Noncontacting measurement of opaque thin films using a dual beam thermal wave probe," Appl. Phys. Lett., vol. 62 (25), Jun. 21, 1993, pp. 3256-3258.
M. Liu, M.B. Suddendorf & M.G. Somekh, "Response of interferometer based probe systems to photodisplacement in layered media," J. Appl. Phys., vol. 76 (1), Jul. 1, 1994, pp. 207-215.
J.F. Bisson & D. Fournier, "Influence of diffraction on low thermal diffusivity measurements with infrared photothermal microscopy," J. Appl. Phys., vol. 83 (2), Jan. 15, 1998, pp. 1036-1042.
E.P. Visser, E.H. Versteegen & W.J.P. van Enckevort, "Measurement of thermal diffusion in thin films using a modulated laser technique: Application to chemical-vapor-deposited diamond films," J. Appl. Phys., vol. 71 (7), Apr. 1, 1992, pp. 3238-3248.
L. Pottier, "Micrometer scale visualization of thermal waves by photoreflectance microscopy," Appl. Phys. Lett., vol. 64 (13), Mar. 28, 1994, pp. 1618-1619.
Chen Li
Opsal Jon
Font Frank G.
Ratiff Reginald A.
Therma-Wave, Inc.
LandOfFree
Apparatus for evaluating metalized layers on semiconductors does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus for evaluating metalized layers on semiconductors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for evaluating metalized layers on semiconductors will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2143088