Metallurgical apparatus – With control means responsive to sensed condition – With temperature sensor
Reexamination Certificate
2002-06-26
2003-03-18
Andrews, Melvyn (Department: 1742)
Metallurgical apparatus
With control means responsive to sensed condition
With temperature sensor
C266S149000
Reexamination Certificate
active
06533990
ABSTRACT:
FIELD OF THE INVENTION
The invention relates to an apparatus for distilling molten baths, comprising a pot-shaped bottom housing part for receiving a melting crucible surrounded by a heating coil and comprising a hood-shaped top housing part connectable in a pressure-proof manner to the bottom housing part.
BACKGROUND OF THE INVENTION
In metalworking industrial enterprises, large quantities of residual material containing a large number of different alloying metals constantly arise, wherein said alloying metals are for the most part present in low or changing mixture ratios in the material. Not least for economic reasons, it is necessary to subject said residual material and technical products to a reclamation process. Such a process makes use of the fact that the alloying metals have different melting points and the metal alloys separate, as they melt down, and boil and/or eate at different temperatures. If an alloy consists e.g. of copper and zinc (brass), the copper melts at 1083° C. and the zinc mixed with the copper melts at 419° C., wherein the zinc has already reached its boiling point at 207° C. and 760 mm mercury column. Mixtures of different metals having different boiling points may therefore be separated from one another, i.e. reclaimed, by distillation followed by condensation.
Apparatuses for distilling and condensing molten baths have therefore already been proposed, which comprise a melting crucible disposed together with a heating coil in a vacuum chamber, wherein provided above the melting crucible is an apparatus for precipitating the metal vapor escaping from the bath. The known apparatuses of said type do however have the drawback that the metals contained in the alloy do not separate from one another completely enough for the metal left in the crucible—i.e. the metal with the highest melting point—to be present in a totally pure form.
Also known is a device for melting down non-ferrous metal scrap and waste, comprising a furnace for receiving a melting crucible, a hood covering the crucible, a storage bin connected to the hood and for receiving the material to be melted down, a charging device, and an exhaust device connected to the hood (DE 33 37 657 C2), wherein the hood is movable between the covering position and a lateral crucible-clearing position and a sealing device, which comes into effect in the covering position, is provided between the hood and the crucible and the storage bin is designed as a batch container sealable in a vacuum-tight manner and is connected in a vacuum-tight manner to the hood and the exhaust device comprises a vacuum pump.
An apparatus for the simultaneous separation of volatile metals, including zinc and lead, from less volatile metals, such as copper from residual material e.g. of molten baths, is moreover known, comprising a reactor with a reactor chamber and a top feed chamber and a vertically extending pipe connecting both chambers, wherein the reactor chamber is connected to an oxygen source and heatable by a plasma generator and the feed chamber is connected by a conduit to a condenser with gas outlet and is provided with a sluice for introducing the batch (GB 22 10 629 A). The material introduced into the pipe is melted open by the plasma generator, wherein the volatile constituents from the reactor chamber rise through the material in the pipe as far as into the feed chamber and there form a cloud above the introduced batch, wherein some of the volatile constituents rise through the conduit as far as into the condenser.
Finally, a method of collecting a metal from gases, which substantially comprise a vapor of said metal, is known, in which an adiabatic expansion of the gases is produced in a Laval nozzle in order to develop a flow, the kinetic energy of which because of the enthalpy drop of the flow and the conversion of the latter into the kinetic energy is so high that the vapor of the metal expands to a pressure and is cooled to a temperature, which is lower than the boiling point of the metal given the pressure, wherein the flow is blown into a bath of molten metal of the same type as the metal vapor, which bath is contained in a receiving container, (EP 124 635 B1).
OBJECT AND SUMMARY OF THE INVENTION
The underlying object of the present invention is therefore to provide an apparatus, which enables complete separation of alloying constituents.
The apparatus is moreover to be of a simple design and usable as universally as possible.
Said object is achieved according to the invention in that both the bottom and the top housing part are connectable to a vacuum source, wherein the top housing part comprises the metal vapor condenser in the shape of a truncated cone, which is moulded from a sheet metal blank and of which the bottom edge facing the melting crucible and formed by the larger base circle is situated above an annular or toroidal draining channel or drip pan, wherein a ball-cup-shaped or truncated-cone-shaped metal vapor baffle element is disposed in the top part of the metal vapor condenser, close to the focus of its truncated-cone-shaped lateral surface, wherein the lateral surface of the metal vapor baffle element extends with slight clearance relative to the inner surface of the metal vapor condenser.
The metal vapor condenser at its bottom edge facing the melting crucible is preferably provided with a drip edge in the form of a circular-cylindrical ring, which is firmly connected to the sheet metal blank and of which the edge portion facing the melting crucible dips by a small amount into the draining channel and, together with the radially outer wall portion of the draining channel, forms a labyrinth seal.
At the top end of the hood-shaped housing part an opening is advantageously provided, into which a filter element is inserted, wherein the gases or vapors passing through the filter element enter a filter pot, which rests on the top housing part and is connected by a first vacuum line to the vacuum source.
Further details and features of the invention are described in detail and characterized in the claims.
REFERENCES:
patent: 2229716 (1941-01-01), Blackwell et al.
patent: 33 37657 (1985-04-01), None
patent: 0 124635 (1984-11-01), None
patent: 2 210 629 (1989-06-01), None
patent: 62-266125 (1987-11-01), None
Zur Verdampfund . . . Druck, Illschner, et al. pp. 626-632 dated 1960.
Kemmer Hans-Jürgen
Popov Ivaylo
Scholz Harald
Ald Vacuum Technologies AG
Andrews Melvyn
Fulbright & Jaworski L.L.P.
LandOfFree
Apparatus for distilling molten baths does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus for distilling molten baths, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for distilling molten baths will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3001950