Printing – Stenciling – Traveling-inker machines
Reexamination Certificate
2001-10-01
2003-09-30
Yan, Ren (Department: 2854)
Printing
Stenciling
Traveling-inker machines
C101S366000, C222S234000
Reexamination Certificate
active
06626097
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to an apparatus and process for dispensing material, and more specifically to an apparatus and process for dispensing solder paste in a screen or stencil printer.
BACKGROUND OF THE INVENTION
In typical surface-mount circuit board manufacturing operations, a stencil printer is used to print solder paste onto a circuit board. Typically, a circuit board having a pattern of pads or some other, usually conductive, surface onto which solder paste will be deposited is automatically fed into the stencil printer and one or more small holes or marks on the circuit board, called fiducials, is used to properly align the circuit board with the stencil or screen of the stencil printer prior to the printing of solder paste onto the circuit board. In some prior art systems, an optical alignment system is used to align the circuit board with the stencil. Examples of optical alignment systems for stencil printers are described in U.S. Pat. No. 5,060,063, issued Oct. 21, 1991 to Freeman, and in U.S. Pat. Re. 34,615, issued Jan. 31, 1992, also to Freeman, each of which is incorporated herein by reference.
Once the circuit board has been properly aligned with the stencil in the printer, the circuit board is raised to the stencil, solder paste is dispensed onto the stencil, and a wiper blade (or squeegee) traverses the stencil to force the solder paste through apertures in the stencil and onto the board. As the squeegee is moved across the stencil, the solder paste tends to roll in front of the blade, which desirably causes mixing and shearing of the solder paste so as to attain desired viscosity to facilitate filling of the apertures in the screen or stencil. The solder paste is typically dispensed onto the stencil from a standard cartridge such as that manufactured by SEMCO Corporation.
In some prior art stencil printers, any excess solder paste remaining under the squeegee after it has fully traversed the stencil, remains on the stencil when the squeegee is returned to its initial position for printing on a second circuit board. In some prior art screen printers, a second squeegee is used that moves across the stencil in the direction opposite to that of the first squeegee. The first squeegee and the second squeegee are used on alternating boards to continually pass the roll of solder paste over the apertures of a stencil to print each successive circuit board. In the prior art stencil printers that utilize two squeegees, there is still the problem that at the end of a manufacturing day, or when the stencil is to be changed, excess solder paste typically remains on the stencil and must be manually removed. Also, in these prior art printers, it is difficult to maintain a desirable viscosity because volatile solvents escape from the solder paste thereby affecting the viscosity of the solder paste.
In the prior art stencil printers discussed above, the squeegee blades are typically at a predetermined angle with the stencil to apply downward pressure on the solder paste to force the solder paste through the apertures in the stencil as the squeegee is moved across the stencil. The angle of the blade is selected based on the speed at which the blade traverses the stencil and based on the desired downward pressure on the solder paste from the blade. It is desirable to maintain a consistent pressure on the solder paste as the squeegee traverses the stencil, however, in typical prior art printers, the pressure varies due to variations in paste viscosity throughout a production run, and due to variations in the angle of the squeegee caused by deformation of the squeegee due to the pressure applied by the squeegee driving device.
It is desirable to provide a method and apparatus for dispensing material onto a stencil of a printer that overcome the problems discussed above.
SUMMARY OF THE INVENTION
Embodiments of the present invention provide methods for dispensing material and stencil printers having a dispensing apparatus that overcome the problems of the prior art discussed above.
In a first embodiment of the present invention, a printer for printing a viscous material at predetermined positions forming a pattern on a substrate is provided. The printer includes a frame, a device, mounted to the frame, having a number of perforations arranged to form the pattern, a support apparatus, coupled to the frame that supports the substrate in a printing position beneath the device, and a material dispenser having a substantially cylindrical chamber to contain viscous material to be printed on the device. The chamber has an opening through which the viscous material is dispensed. The material dispenser is coupled to a frame, positioned over the device, and constructed and arranged to dispense the viscous material through the perforations in the device and onto the substrate.
Alternate versions of the first embodiment of the present invention include a number of different features. In one version, the material dispenser is constructed and arranged to be movable along a first axis across the device while the viscous material is being dispensed from the chamber. In another version, the chamber has a cylindrical axis extending along a length of the chamber, and the interior surface of the chamber is coated with a coating material having a low coefficient of friction to allow mixing of the viscous material within the chamber when the material dispenser is moved across the device. In alternate embodiments, different coatings having both high and low coefficients of friction may be used on the interior surface of the chamber to enhance the laminar flow of material in the chamber.
In another version of the first embodiment, the printer further includes a heater to heat the viscous material or a cooler to cool the material, and the material dispenser includes at least one port to receive pressurized paste to increase the paste pressure in the chamber to force viscous material from the chamber.
In yet another version of the first embodiment, the material dispenser further includes a pressure sensor that senses pressure within the chamber, and the printer further includes a controller, coupled to the pressure sensor, that senses the pressure within the chamber and maintains the pressure at a desired value.
In another version of the first embodiment, the material dispenser is adapted to receive a removable cartridge, and in some versions, the removable cartridge is a standard SEMCO cartridge.
In still another version of the first embodiment, the material dispenser includes a pair of inwardly facing blades with side dams that contact the device during printing to prevent excess material from accumulating on the device.
In another version of the first embodiment, the printer further includes a solder gathering squeegee arm that collects excess viscous material remaining on the device when the material dispenser is lifted off of the device.
In a second embodiment of the present invention, a printer for printing a viscous material at predetermined positions forming a pattern on a substrate is provided. The printer includes a frame, a device, mounted to the frame, having a number of perforations arranged to form a pattern, a support apparatus that supports the substrate in a printing position beneath the device, and a material dispenser having a chamber to contain the viscous material to be printed on the substrate. The chamber has an opening through which the viscous material is dispensed. The material dispenser is positioned over the device, constructed and arranged to dispense the viscous material through the perforations in the device and onto the substrate, and adapted to receive a removable cartridge that supplies the viscous material to the chamber. The chamber has an inlet adapted to receive the viscous material from the removable cartridge.
Alternate versions of the second embodiment of the present invention may include one or more of the features of versions of the first embodiment discussed above.
A third embodiment of the present invention provides a material dispen
Balog Robert
Freeman Gary T.
Rossmeisl Mark
Mintz Levin Cohn Ferris Glovsky and Popeo P.C.
Speedline Technologies, Inc.
Yan Ren
LandOfFree
Apparatus for dispensing material in a printer does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus for dispensing material in a printer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for dispensing material in a printer will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3095230