Measuring and testing – Liquid analysis or analysis of the suspension of solids in a... – By vibration
Reexamination Certificate
2000-01-24
2001-09-04
Larkin, Daniel S. (Department: 2856)
Measuring and testing
Liquid analysis or analysis of the suspension of solids in a...
By vibration
C073S019030, C073S061790
Reexamination Certificate
active
06282949
ABSTRACT:
TECHNICAL FIELD
The present invention relates to an apparatus for detecting inhomogeneities in a liquid flow, particularly air bubbles, by means of ultrasonics.
BACKGROUND OF THE INVENTION
In many situations it is important to be able to detect the presence of inhomogeneities, such as bubbles, in a liquid flow. This is the case in, for example, the medical field in parenteral administration of treatment solutions where the patient must be protected from the infusion of air bubbles. In industry, for example, the presence of bubbles in a cooling system indicates insufficient cooling capacity. In the analytical field, particularly the detection of air bubbles in passages for liquid chromatography may be mentioned.
A common method for detecting bubbles of gas in a liquid flow is based on the use of ultrasonics and relies on the fact that a gas has a considerably higher acoustic impedance than that of a liquid or a solid material. Thus, if ultrasound is emitted from a sender on one side of a liquid conduit to a receiver on the other side of the conduit, the presence of air bubbles, for example, in the liquid may be detected as a distinct reduction of the received sound energy compared to when there is only liquid in the conduit.
Ultrasound may be generated in a piezoelectric transducer, so-called piezotransducer, in which a crystal is oscillated when actuated by an electric voltage. Conversely, the crystal produces an electric voltage when ultrasound hits the crystal. An ultrasonic transducer may consequently both emit and receive sound.
There is previously known for liquid chromatography purposes an apparatus for bubble detection, which apparatus can be connected to a chromatography system and comprises a plastic block having a liquid through-passage, and a sender and a receiver mounted to either side of the liquid passage. A disadvantage of this apparatus is that the difference between the signals obtained for liquid and air, respectively, is not very great since the emitted ultrasound can propagate beside the liquid passage and still hit the receiver. Likewise, ultrasound that has passed through the liquid passage can then propagate beside the receiver. The apparatus therefore requires complicated electronics for processing the signal from the ultrasound transducers as well as a complicated trimming procedure when installing the device.
U.S. Pat. No. 4,418,565 describes an ultrasonic bubble detection apparatus in the form of a plastic block having inserted therein a pair of opposed ultrasonic transducers (transmitter and receiver) and a channel defined between the transducers, into which channel the liquid conduit where bubbles are to be detected is applied, typically, a tube from a bag or bottle for parenteral administration of solution. Between each transducer and the passage there is a recess filled with an elastomeric ultrasound-transmitting material. To prevent propagation of ultrasound from the sender to the receiver by a route other than through the elastomeric material, and thereby through the liquid conduit, an air-containing slot is positioned in the bottom of the channel. This slot, which is too narrow to be capable of receiving the liquid conduit, extends to a depth at least below the lower edges of the ultrasonic transducers.
While this construction for guiding the ultrasound by shielding at least partially overcomes the above mentioned detection problems of the first described bubble detecting apparatus, the construction has other disadvantages. First of all, the apparatus itself has a complicated construction and contains inter alia screws, spacer elements, and pressure plates. Further, the sensing of a tube is unpractical and requires that the tube be mounted with good acoustic coupling. This may in fact be accomplished if the tube is flexible, but such a tube does not withstand the relatively high fluid pressures that often prevail in, for example, liquid chromatography. The achievement of sufficient acoustic coupling with a rigid tube, on the other hand, requires the use of mounting paste which is very impractical. Due to the slot defined below the liquid conduit channel, the bubble detection apparatus also obtains bad strength properties, especially with regard to twisting or torsional strength.
SUMMARY OF THE INVENTION
One object of the present invention is to provide an ultrasonic apparatus for the detection of gas bubbles and other inhomogeneities in a liquid flow, which apparatus like the first described apparatus above has an integral pressure-resistant liquid passage but where the liquid passage is a dominating element in the sound path in order to insure a great difference between the signal for gas and that for liquid.
Another object of the invention is to provide an apparatus that permits the use of simple electronics for driving and signal processing.
Yet another object of the invention is to provide an apparatus of the type mentioned above which is robust and simple to use.
A further object of the invention is to provide an apparatus of the type mentioned above which contains few details and is simple to manufacture.
According to the invention, these and other objects and advantages are achieved, in an ultrasonic bubble detection apparatus having a one-piece housing with a liquid through-passage and two opposed ultrasonic transducers mounted on the housing on either side of the passage, by the provision of two opposed recesses cut in the housing between each transducer and the liquid passage and on opposite sides of the sound transmission path for the recesses to together shield the sound path between the transducers so that essentially all ultrasonic energy that is received by the receiver has passed through the liquid passage. In other words, the sound distribution between the passage and the surrounding material in the transverse direction of the sound will be such that the passage dominates the cross-sectional area that the ultrasound passes when propagating through the housing. Thereby, a great and reliable difference between air indication and liquid indication is achieved. Due to the opposed arrangement of the recesses, excellent strength of the housing may also be maintained.
One aspect of the invention therefore relates to an apparatus for detecting inhomogeneities in a liquid flow, which apparatus comprises a one-piece housing of a material that is transmissive to ultrasound, a liquid passage extending through the housing, inlet and outlet means on the housing for connecting the liquid passage to the liquid flow, and ultrasonic transducer means on the housing on each side of the liquid passage, one transducer being arranged as sender and the other as receiver with the liquid passage positioned in the sound transmission path between the sender and the receiver, whereby inhomogeneities in the liquid flow can be detected based on the ultrasound energy received by the receiver. The apparatus is characterized in that the housing has two opposed recesses, one on the sender side of the liquid passage and one on the receiver side thereof. In a direction perpendicular to the sound transmission path as well as to the liquid passage, the two recesses extend on opposite sides of the sound transmission path substantially to the level of the respective outer edge of the liquid passage in order to together, by shielding, guide the ultrasound transmission between the sending transducer means and the receiving transducer means so that the ultrasound transmission takes place substantially through the liquid passage (and not through the surrounding material).
In another aspect, the invention relates to a system for detecting inhomogeneities in a liquid flow, which system in addition to the apparatus described above includes means for processing and presenting the signal from the ultrasonic transducers.
To facilitate the understanding of the invention, it is described in more detail below, by way of example only, with regard to a specific embodiment, reference being made to the accompanying drawings.
REFERENCES:
patent: 3921622 (1975-11-01), Cole
patent: 4
Amersham Pharmacia Biotech AB
Larkin Daniel S.
Ronning, Jr. Royal N.
LandOfFree
Apparatus for detection of inhomogeneities in a liquid flow does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus for detection of inhomogeneities in a liquid flow, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for detection of inhomogeneities in a liquid flow will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2541523