Fluent material handling – with receiver or receiver coacting mea – Filling means with receiver or receiver coacting means – Flexible hose terminal with receiver engaging means
Reissue Patent
2002-05-14
2003-12-09
Jacyna, J. Casimer (Department: 3751)
Fluent material handling, with receiver or receiver coacting mea
Filling means with receiver or receiver coacting means
Flexible hose terminal with receiver engaging means
C222S327000
Reissue Patent
active
RE038342
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The instant invention relates generally to the field of pressurized fluid systems and more specifically it relates to an apparatus for detecting leaks in a pressurized air conditioning or refrigeration system. The purpose of the apparatus is to provide the technician with a simple method of injecting a predetermined amount of a secondary fluid, e.g., a fluorescent dye, and/or lubricant into a pressurized system.
2. Description of the Prior Art
Numerous pressurized fluid systems have been provided in the prior art that are adapted to operate optimally within a certain pressure range. If the internal pressure falls below this range, the system needs to be recharged with an appropriate lubricant. While these units may be suitable for the particular purpose to which they address, they would not be as suitable for the purposes of the present invention as heretofore described.
There does not presently exist a cost effective way to accomplish the task of inserting a predetermined amount of lubricant into a pressurized system. Added to this, is the fact that when a technician arrives on site they are faced with a myriad number of systems with service connection access ranging from the accessible to the acrobatic and often cramped working conditions.
Some systems contain a combination of fluids. For example, air conditioning and refrigeration systems generally contain a refrigerant (the primary fluid) in combination with a lubricating oil (the secondary fluid) for the compressor and other critical components. The lubricating oil is generally present in fairly low quantities, usually less than 5% of the total fluid. The present invention provides for the introduction of these and other secondary fluids into air conditioning or refrigeration systems charged with the primary fluids in order to detect leaks in the pressurized systems.
Furthermore, air conditioning or refrigeration system leaks are difficult to locate because refrigerants are generally odorless and colorless gases. The present invention provides for a device and method for injecting a small amount of a concentrated fluorescent additive or dye into the system, thereby making the leaks easier to find. The fluorescent dye can be injected into the system with the present device or they can be placed in the systems at the original equipment manufacturing facility prior to the system being put into service. These air conditioning and refrigeration systems are closed loop recirculating systems and the secondary fluid is a lubricant that also travels throughout the system while in operation. The dye will travel throughout the system and leak out with the refrigerant. The dye will leave a stain that can be further enhanced with the use of an ultraviolet (UV) lamp. The UV wavelength of light will excite the dye allowing the operator to more easily identify the exact location of the leak. The device can also be used to add the appropriate lubricant to the air conditioning or refrigeration system without stopping the system and without any special equipment.
A cartridge that is at or about atmospheric pressure while not in use contains the concentrated fluorescent dye and/or lubricant. The cartridge is connected to the device of the present invention in way that will raise the pressure of the dye above that of the operating system. The connection between the device and the operating system must be airtight. The connection can be a quick coupler, thread or other means of positive, sealed connection.
SUMMARY OF THE INVENTION
The preferred embodiment of the present invention is for an apparatus for detecting leaks in a pressurized air conditioning or refrigeration system and includes an injection device with a receptacle portion for receiving a disposable or reusable lubricant canister and a connector assembly for attaching the lubricant canister to the pressurized system. The lubricant canister contains lubricant and/or fluorescent dye. It is a further aim of the present invention not to limit the mechanical means of lubricant and/or fluorescent dye delivery just to hand pressure, but to provide other embodiments using various types of hand tools and structures to accomplish the delivery of the lubricant and/or fluorescent dye to the pressurized system.
More specifically, the present invention is for an apparatus for detecting leaks in a pressurized air conditioning or refrigeration system, comprising a canister containing a second fluid, where the secondary fluid comprises a fluorescent dye; means for fluidly coupling the canister to the pressurized system; and means for forcing the secondary fluid out of the canister, through the fluidly coupling means and into a service valve of the pressurized system.
In a preferred embodiment, the canister includes a tubular casing for holding the secondary fluid therein; a threaded nozzle integral with and extending out from a first end of the tubular casing to engage with one end of the fluidly coupling means; and a piston inserted within an open second end of the tubular casing to engage with a secondary fluid forcing means.
In a more preferred embodiment, the tubular casing is fabricated out of transparent material and includes a plurality of gradient markings to aid in accurately dispensing a predetermined amount of the secondary fluid therefrom. In another embodiment, the canister further includes a threaded cap, to engage with the threaded nozzle when the canister is not in use, so as to prevent leakage of the secondary fluid through the threaded nozzle.
In another preferred embodiment, the fluidly coupling means is a connector assembly having a first end connected to the threaded nozzle of the canister and a second end connected to the service valve of the pressurized system. In a more preferred embodiment, the connector assembly includes a flexible conduit; a thread on the first end of the flexible conduit, to engage with the threaded nozzle of the canister; and a release valve on a second end of the flexible conduit, to engage with the service valve of the pressurized system.
In another preferred embodiment, the connector assembly further includes a one-way check valve at the first end of the flexible conduit, which prevents any material from back flushing into and contaminating the secondary fluid in the canister.
In yet another preferred embodiment, the release valve includes a closeable valve, which prevents any material from back flushing into the flexible conduit from the service valve of the pressurized system, and to allow the release valve to disconnect from the service valve of the pressurized system, to prevent leakage of the secondary fluid therefrom.
In more preferred embodiments, the release valve includes a snap lock fitting to engage with the service valve of the pressurized system or includes a threaded fitting to engage with the service valve of the pressurized system.
In another more preferred embodiment, the secondary fluid forcing means is an injection device. In yet another more preferred embodiment, the injection device includes a housing having a receptacle portion to receive the canister therein; and a drive mechanism to force the piston into the tubular casing, to cause the secondary fluid to exit the threaded nozzle through the fluidly coupling means, past the service valve, and into the pressurized system.
In another preferred embodiment, the drive mechanism includes a hand grip integral with and extending downwardly on the housing; a trigger pivotally mounted to the housing adjacent the hand grip; a central drive shaft extending longitudinally through the housing and transversely past a pivotal portion of the trigger; a cylindrical head on an inner end of the central drive shaft, to engage with the piston of the canister; a first pawl spring biased on the central drive shaft forward the pivotal portion of the trigger; and a second pawl spring biased on the central drive shaft rearward the pivotal portion of the trigger, the second pawl having a tongue extending out through a rear wall of the housing above th
Bell Boyd & Lloyd LLC
Jacyna J. Casimer
UView Ultraviolet Systems, Inc.
LandOfFree
Apparatus for detecting leaks in a pressurized air... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus for detecting leaks in a pressurized air..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for detecting leaks in a pressurized air... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3172150