Telecommunications – Transmitter and receiver at separate stations – Having diverse art device
Reexamination Certificate
2008-03-11
2008-03-11
Nguyen, Duc M. (Department: 2617)
Telecommunications
Transmitter and receiver at separate stations
Having diverse art device
C455S090100, C455S067110, C340S602000, C340S539230
Reexamination Certificate
active
10866318
ABSTRACT:
An apparatus for detecting environmental conditions for a structure or article. The apparatus comprises one or more sensors for sensing conditions at the component or articles and producing one or more signals and a wireless transmitter for wirelessly transmitting data based on the one or more signals to a remote device.
REFERENCES:
patent: 4611171 (1986-09-01), Woods
patent: 6836578 (2004-12-01), Kochergin et al.
patent: 2002/0049080 (2002-04-01), Thompson
patent: 2002/0060631 (2002-05-01), Runge et al.
patent: 2002/0180586 (2002-12-01), Kitson et al.
patent: 2004/0100394 (2004-05-01), Hitt
Abidi, A.A., “Low-Power RF-ICs in Wireless Transceivers,” IEEE Symposium on Low Power Electronics, 1994, pp. 18-21.
Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E., “A Survey on Sensor Networks,” IEEE Communications Magazine, vol. 40, 2002, pp. 102-114.
Ayers, J., Zavracky, P.M., McGruener, N., Massa, D., Vorus, V., Mukherjee, R., Currie, S., 1998, “A Modular Behavioral-Based Architecture for Biomimetic Autonomous Underwater Robots,” Proc. Autonomous Vehicles in Mine Countermeasures Symp., Naval Postgraduate School, CD ROM, http://www.cix.plym.ac.uk/cis/InsectRobotics/Biomimetics.htm, pp. 1-18.
Barnes, T.G., Truong, T.Q., Lu, X., McGruer, E., Adams, G.G., “Design, Analysis, Fabrication, And Testing of a MEMS Flow Sensor,” 1999 ASME International Congress and Exposition on MEMS, vol. 1, 1999, pp. 355-361.
Beebe, D.J., Hsieh, A.S., Denton, D.D., and Radwin, R.G., “A Silicon force Sensor for Robotics and Medicine,” Sensors and Actuators, A 50, 1995, pp. 55-65.
Boillat, M.A., van der Wiel, A.J., Hoogerwerf, A.C., de Rooij, N.F., “A Differential Pressure Liquid Flow Sensor for Flow Regulation and dosing Systems,” Proc. IEEE Micro Electro Mechanical Systems, 1995, pp. 350-352.
Chamberland, J.F., Veeravalli, V.V., “The Art of Sleeping in Wireless Sensing Systems,” IEEE Workshop on Statistical Signal Processing, 2003, pp. 17-20.
Chandrakasan, A., R, A., Cho, S.H., Goodman, J., Konduri, G., Kulik, J., Rabiner, W., Wang, A., “Design Considerations for Distributed Microsensor Systems,” IEEE Custom Integrated Circuits Conference, 1999.
Chen, J., Engel, J., Liu, C., “Development of Polymer-Based Artificial Haircell Using Surface Micromachining and 3D Assembly,” 12th Intl. Conf. On Solid-State Sensors, Actuators and Microsystems, Boston, MA, 2003.
Chen, J., Fan, Z., Engel, J., Liu, C., “Towards Modular Integrated Sensors: The Development of Artificial Haircell Sensors Using Efficient Fabrication Methods,” Proc. of the 2003 IEEE/RSJ Intl. Conf. On Intelligent Robots and Systems, Las Vegas, NV, Oct. 2003.
Chen, J., Fan, Z., Engel, J., Liu, C., “Two Dimensional Micromachined Flow Sensor Array for Fluid Mechanics Studies,” ASCE Journal of Aerospace Engineering, Apr. 2003, pp. 85-97.
Chen, J., Liu, C., “Development and Characterization of Surface Micromachined, Out-of-Plane Hot-Wire Anemometer,” Journal of Microelectromechanical Systems, vol. 12, No. 6, Dec. 2003, pp. 979-988.
Chen, J., Zou, J., Liu, C., “A Surface Micromachined, Out-of-Plane Anemometer,” Proc of MEMS 02, Las Vegas, NV, 2002, pp. 332-335.
de Bree, H-H Jansen, H.V., Lammerink, T.S.J., Krijnen, G.J.M, Elwenspoek, m., 1999, “Bi-Directional Fast Flow Sensor with a Large Dynamic Range,” J. Micromech. Microeng. 9 (1999), pp. 186-189.
Ebefors, T., Kalvesten, E., Stemme, G., “Three Dimensional Silicon Triple-Hot-Wire Anemometer Based on Polyimide Joints,” Proc. 11thAnnual Int. Workshop on Micro Electro Mechanical Systems: An Investigation of Micro Structures, Sensor, Actuators, Machines and Systems, Heidelberg, Germany, 1998, pp. 93-98.
Editor, “Touchy Touchy,” the Economist, 2002, pp. 66-67.
Engel, J., Chen, J., Liu, C, “Development of a Multi-Modal, Flexible Tactile Sensing Skin Using Polymer Micromachining,” 12thIntl. Conf. On Solid-State Sensors, Actuators and Microsystems, Boston, MA, 2003.
Engel, J., Chen, J., Liu, C, “Development of Polyimide Flexible Tactile Sensor Skin,” Journal of Micromechanics and Microengineering, vol. 13, No. 9, 2003, pp. 359-366.
Engel, J., Fan, Z., Zhao, L., Chen, J., Liu, C., “Smart Brick—A Low Cost, Modular Wireless Sensor For Civil Structure Monitoring,” Micro and Nanotechnology Laboratory, University of Illinois, Urbana, IL.
Enoksson, P., Stemme, G., Stemme, E., “A Coriolis Mass Flow Sensor Structure in Silicon,” Proc. 9thAnnual Int. Workshop on Micro Electro Mechanical Systems: An Investigation of Micro Structures, Sensors, Actuators, Machines and System, 1996, pp. 156-161.
Fan, Z., Chen, J., Zou, J., Bullen, D., Liu, C., and Delcomyn, F., “Design and Fabrication of Artificial Lateral Line Flow Sensors,” Journal of Micromechanics and Microengineering, 12 (Sep. 2002), pp. 655-661.
Gray, B.L., Fearing, R.S., “A Surface Micromachined Microtactile Sensor Array,” Proc 1996 IEEE Int'l Conf. On Robotics and Automation, Minneapolis, MN, 1996, pp. 1-6.
Jiang, F., Tai, Y.C., Ho, C.M., Rainer, K., and Garstenauer, M., Theoretical and Experimental Studies of Micromachined Hot-Wire Anemometer, Digest IEEE Int. Electron Devices Meetings (IEDM) (San Francisco), 1994, pp. 139-142.
Jiang, F., Tai, Y.C., Walsh, K., Tsao, T., Lee, G.B., Ho, C.M., “A Flexible MEMS Technology and its First Application to Shear Stress Sensor Skin,” Proc 1997 IEEE Int'l Conf. On MEMS, pp. 465-470.
Kalvesten E., Vieider C., Lofdahl, L., Stemme, G., “An Integrated Pressure-Flow Sensor for Correlation Measurements in Turbulent Gas Flows,” Sensors Actuators A 52, 1996, pp. 51-58.
Kane, B.J., Cutkosky, M.R., Kovacs, T.A., “A Traction Stress Sensor Array for Use in High-Resolution Robotic Tactile Imaging,” Journal of MEMS, vol. 9, 2000, pp. 425-434.
Kolesar, E.S., Dyson, C.S., “Object Imaging with a Piezoelectric Robotic Tactile Sensor,” Journal of MEMS, vol. 4, No. 2, 1995, pp. 87-96.
Lee, M.H., Nicholls, H.R., “Tactile Sensing for Mechatronics—a State of the Art Survey,” Mechatronics, vol. 9, 1999, pp. 1-33.
Leineweber, M., Pelz, G., Schmidt, M., Kappert, H., Zimmer, G., “New Tactile Sensor Chip with Silicone Rubber Cover,” Sensors and Actuators vol. 84, 2000, pp. 236-245.
Liu et al., “Polymer Micromachining and Applications in Sensors, Microfluidics, and Nanotechnology,” 226thAmerican Chemical Society National Meeting, New York, 2002.
Li, J., Fan. J., Chen, J., Zou, J, Liu, C., Delcomyn, F., “High Yield Microfabrication Process for Biomimetic Artificial Haircell Sensors,” smart Electronics, MEMS, and Nanotechnology, Conference (Conference 4700), SPIE's 9thannual International Symposium on Smart Structures and Materials, Mar. 17-21, 2002, San Diego, CA.
Liu, C., Huang, J., Zhu, Z., Jiang, F., Tung, S., Tai, Y.C., Ho, C.M., “A Micromachined Flow Shear-Stress Sensor Based on Thermal Transfer Principles,” IEEE/ASME Journal of Microelectromechanical Systems (JMEMS), vol. 8, No. 1, 1999, pp. 90-99.
Lofdahl, L., Kalvesten, E., Hadzianagnostakis, T., Stemme, G., “An Integrated Silicon Based Wall Pressure-Shear Stress Sensor for Measurements in Turbulent Flows,” DSC-vol. 59, Proc. 1996 Int. Mechanical Engineering Congress and Exposition, New York, NY, 1996, pp. 245-251.
Lofdahl, L., Stemme, E., Stemme, G., 2001, “Silicon Based Flow Sensors Used for Mean Velocity and Turbulence Measurements,” Exp. in Fluids, 12, 1992, pp. 270-276.
Martin, R., “Mother Knows Best: Imitating Nature is the Sincerest Form of Flattery,” Forbes ASAP, 2002, pp. 26-29.
Ozaki, Y., Ohyama, T., Yasuda, T., Shimoyama, I., “An Air Flow Sensor Modeled on Wind Receptor Hairs of Insects,” Proc. MEMS '00, Miyazaki, Japan, pp. 531-536.
Padmanabhan, A., Goldberg, H., Breuer, K.D., Schmidt, M.A
Engel Jonathan
Liu Chang
Casca Fred
Greer Burns & Crain Ltd.
Nguyen Duc M.
The Board of Trustees of the University of Illinois
LandOfFree
Apparatus for detecting environmental conditions for a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus for detecting environmental conditions for a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for detecting environmental conditions for a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3912248