Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form
Reexamination Certificate
1996-04-17
2002-05-14
Hulina, Amy (Department: 1616)
Drug, bio-affecting and body treating compositions
Preparations characterized by special physical form
C600S001000, C600S002000, C600S009000, C601S015000, C606S031000, C606S034000, C607S096000, C607S101000, C607S113000, C607S154000, C128S898000
Reexamination Certificate
active
06387380
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally for achieving contour sculpting and more particularly to a method and apparatus that creates a reverse thermal gradient in order to achieve contour sculpting through partial denaturation of collagen without ablation of the collagen and without affecting the melanocytes and other epithelial cells.
2. Description of Related Art
The skin is the one organ of the body that is readily available for inspection by the eyes and fingers of every living person. It is subjected to considerable abuse such as exposure to extreme environmental of cold, heat, wind, and sun.
The surface layer of the skin is called the epidermis. It is the barrier that prevents most substances from entering the body from outside while preventing body fluids from entering equilibrium with the environment. The basilar layer of the epidermis includes the melanocytes and other epithelial cells.
The melanocytes are small cells with a small, dark staining nucleus and a clear cytoplasm. Melanin in packaged in distinctive granules is produced by these cells and transferred then air dendritic processes to adjacent keratinocytes. The purpose of melanin is to protect the skin from the ravages of ultraviolet radiation. Beneath the epidermis is the papillary dermis and reticular dermis. Collagen tissue is found in the dermal and the sub dermal tissues.
There has been a large market for tightening the skin in order to reduce aging effects and effects created by exposing the skin to extreme environmental forces. To date there are two primary methods for tightening skin. The first is surgical skin excision. The second is chemical burn. When skin is surgically excised it leaves large scares. This is generally not a satisfactory solution for many skin tightening applications. With chemical peel treatments the process is painful, there is damage to the melanocytes and other epithelial cells, the patient maybe have spotted pigmentation, or with most of the melanocytes and other epithelial cells destroyed the patient can have a predominately white complexion. In the chemical peel method a thermal gradient is created which is hotter at the surface of the epidermis and cooler at the sub dermal layers. With the creation of this type of thermal gradient there is a great likelihood of modification or destruction of the melanocytes and other epithelial cells, resulting in blotchiness or an inability to tan in the future.
Collagen molecules are produced by fiborblasts which synthesize three polypeptide chains that wrap around one another in a triple helix. Each of the chains is approximately 1000 amino acid units in length, with glycine recurring regularly every third unit and hydroxyproline and proline recurring very frequently. Cross-linking occurs between the side, not the ends, of collagen molecules and is coupled with the amino acid composition to give collagen its great strength. Collagen tissue shrinkage takes place in a direction parallel to an axis of collagen fibers.
The phenomenon of thermal shrinkage of collagen begins with a denaturization of the triple helix of the collagen molecule. Partial denaturization of collagen tissue results in a shrinkage of the collage and provides a “tightening” effect on the overlaying skin. To date there have been no devices or methods for contracting the underlying collagen tissue through partial denaturization without damaging the melanocytes and other epithelial cells in the epidermis.
Adipose tissue, more commonly known as fat, is formed of cells containing stored lipid. Adipose tissue is often subdivided into small lobules by connective collagen tissue serving as the fibrous septae.
Adipose tissue is widely distributed in the subcutaneous tissue but exhibits regional differences in amount partially because of age and sex. Excess adipose tissue can be physically undesirable from both health and cosmetic perspective. A current method for the removal of fatty tissue is the extraction of adipose tissue by liposuction. This is a purely mechanical method with undesirable side effects due to the invasive nature of the process.
Another method of removing fatty tissue is disclosed in U.S. Pat. No. 5,143,063 (“the '
063
”). The method of the '
063
patent targets adipose tissue absorbs sufficient energy resulting in cell destruction and death. The method of the '
063
patent fails to minimize damage to the melanocyte in the epidermis. Thus, with the method of the '
063
patent can create unwanted blotchiness or changes in the melanocytes and other epithelial cells.
There exists the need for skin tightening without damaging the melanocytes and other epithelial cells, or without surgical intervention. There is a further need for non-surgically removing adipose tissue without damaging the melanocytes and other epithelial cells.
SUMMARY OF THE INVENTION
It is an object of the present invention is to provide a method and apparatus for creating a reverse thermal gradient that utilizes one or more RF electrodes, an electrolytic solution to transfer RF energy from the RF electrodes to the epidermis and underlying layers, and wherein the apparatus includes a lumen adapted to receive a cooling fluid.
It is another object of the present invention to provide a method and apparatus for non surgically reducing loculations of fat without substantially damaging the melanocytes and other epithelial cells.
Another object of the present invention is to provide a method and apparatus for non surgically reducing loculations of fat with the use of a thermal energy source that does not substantially effect the melanocytes and other epithelial cells.
A further object of the present invention is to provide a method and apparatus for contour sculpture, by utilizing a reverse thermal gradient to partially denature collagen in fibrous septae tissue.
These and other objects of the invention are provided in an apparatus for applying radiant energy through the skin to an underlying subcutaneous layer, and deeper soft tissue layers, such as the muscle and overlying fascia, include loculations of fat with fibrous septae made of collagen tissue. Application of the radiant energy creates a desired contour effect without substantially modifying the melanocytes and other epithelial cells in the epidermis. The apparatus includes a membrane that conforms a contacting exterior surface of the membrane to a skin layer. One or more thermal electrodes are positioned in the membrane and create a reverse thermal gradient from the skin layer to the underlying collagen tissue. A focussing element focuses thermal energy to the underlying collagen tissue. The focussing element and the electrolytic solution create a reverse thermal gradient from the skin to the collagen tissue. A thermal power source is coupled to the thermal electrodes.
Further, a method of liposulpturing a layer under the skin comprised of a loculation of fat which has collagen tissue as a fibrous septae includes providing a membrane and a thermal energy source. A reverse thermal gradient is created which cools the top surface of the skin while heating the underlying loculation of fat. This is achieved without substantially modifying the melanocytes and other epithelial cells in the epidermis. Collagen tissue of the fibrous septae is partially denatured and contracted with a diminished destruction of cells.
Radiant energy is applied to a variety of different skin layers including the papillary dermis layer, the reticular dermis layer, and even to a subcutaneous layer and to underlying soft tissue. One suitable energy source is one or more RF electrodes. Electrolytic solution transfers RF energy from the RF electrodes to the underlying collagen tissue. The cooling fluid can create a reverse thermal gradient at the epidermis to underlying desired layers of about 30 degrees to about 80 degrees C. The apparatus can further include one or more thermal sensors positioned on the contacting exterior surface of the membrane, as well as one or more impedance monitors. Further, the appa
Hulina Amy
Thermage, Inc.
Wilson Sonsini Goodrich & Rosati
LandOfFree
Apparatus for controlled contraction of collagen tissue does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus for controlled contraction of collagen tissue, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for controlled contraction of collagen tissue will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2816787