Surgery – Endoscope – With foot pedal control for endoscope operation
Reexamination Certificate
1996-10-21
2002-04-09
Mulcahy, John (Department: 3739)
Surgery
Endoscope
With foot pedal control for endoscope operation
C600S118000, C200S086500, C200S201000, C378S063000, C378S098000, C378S115000
Reexamination Certificate
active
06368269
ABSTRACT:
TECHNICAL FIELD
The present invention relates generally to foot pedal operated switches and to an apparatus for concurrent actuation of multiple foot pedal operated switches. More specifically, the present invention relates to an apparatus for concurrent actuation of multiple foot pedals to coordinate the operation of devices actuated by foot pedal operated switches, for example, medical equipment such as a video endoscope or a video fluoroscope.
BACKGROUND OF THE INVENTION
Endoscopes have long been widely used in medical procedures for directly visualizing the interior of a canal or body cavity. A recent improvement on the endoscope is the video endoscope, wherein fiber optics permit the endoscopic view to be displayed on a video monitor. Video endoscopy provides a number of advantages over traditional endoscopy, including permitting more than one person at a time to observe the endoscopic view, permitting the physician to assume a more comfortable viewing angle, while permitting clearer still photographs or a videotape record to be made of the procedure.
Similarly, modern fluoroscopic technology presents advances over conventional radiography. In conventional radiography, X-rays are projected through a patient onto a photographic film which, when processed, will provide a fixed image of the patient'internal structure. In fluoroscopy, the X-ray sensitive photographic film is replaced by a fluorescent screen which, when subjected to X-radiation, produces a direct image of the object under investigation. Because the image on the fluorescent screen is usually so faint that it is difficult to visualize with the unaided eye, the screen image is usually photographed with a sensitive video camera. The video signal is then processed to increase the brightness of the image, and the image is displayed on a video fluoroscopy monitor for viewing by the physician. Fluoroscopy affords two primary advantages over conventional radiography: first, the image produced is direct, so there is no need for photographic processing; and second, the image is viewed in “real time”, rather than as a still photograph or series of still photographs, and can thus show movement.
Surgical modalities are well known wherein video endoscopy is used in conjunction with dye-injection studies under fluoroscopy at various times during the procedure. Examples of such procedures include endoscopic management of biliary tract obstruction and endoscopic sphincterotomy. In these procedures, the physician uses an endoscope to maneuver a catheter down the esophagus, through the stomach, and into position within either the bile duct or pancreatic duct. The endoscopic view is projected on a video endoscopy monitor. A quantity of radiographically opaque dye is then injected through the catheter retrograde into the selected duct. Subsequently, the duct is viewed fluoroscopically on a video fluoroscopy monitor, and the X-rays illuminate the dye to reveal the anatomy and possible abnormalities in the biliary system. If the dye does not properly fill the duct, the catheter may have to be repositioned under endoscopic supervision to permit further infusion of dye. When further dye has been infused, the physician again views the duct fluoroscopically on the video fluoroscopy monitor. After the procedure has been completed within the first duct, the physician uses the endoscope to reposition the catheter within the other of the bile or pancreatic duct, and the dye injection procedure is repeated. The physician then switches back to the, fluoroscopic view to visualize the second duct. Depending upon the success of the initial dye injection into the second duct, the physician may again have to switch to the endoscope to reposition the catheter within the second duct, and then switch back to the fluoroscope to view the duct.
During steps when the physician is using the endoscope rather than the fluoroscope, fluoroscopy may inadvertently continue while the physician'attention is occupied with the endoscopic procedure. The patient and attending medical personnel are thus exposed unnecessarily to excessive dosages of X-rays during those periods when the physician is not actually viewing the fluoroscope. Thus, there is a need to provide a means for avoiding this accidental overexposure of the patient and attending medical personnel to X-rays during periods when the fluoroscope is not actually being used by the physician.
Apparatus has been developed to address the problem of accidental over-radiation of a patient and attending medical personnel during surgical procedures involving fluoroscopy and endoscopy. In my U.S. Pat. Nos. 4,993,464 and 5,127,444, which patents are incorporated herein by reference, apparatus is described in which video outputs from a fluoroscope and an endoscope are connected to a switching device. The physician uses the switching device to select from between the endoscope video output and the fluoroscope video output for viewing on a single video monitor. When the endoscope video output is selected for viewing, the switching device automatically deactivates the X-ray generator of the fluoroscope. When the switching device is actuated to select the fluoroscope video signal for viewing on the monitor, the switching device automatically reactivates the X-ray generator. In this manner, over-radiation of the patient during periods when the fluoroscope is not being used is avoided.
While the device disclosed in my aforesaid U.S. Pat. Nos. 4,993,464 and 5,127,444 represents a significant solution to the problem of accidental over-radiation, it suffers certain drawbacks, foremost among these being that the device requires that the standard fluoroscope foot pedal for activating the fluoroscope must be replaced in favor of a special foot pedal which allows integration of the switching device during the combined endoscopic/fluoroscopic procedure. At the termination of its use, the switching device must be removed and the special foot pedal reestablished in an uninterrupted fashion for resumption of normal foot pedal control of the fluoroscope. It would therefore be desirable if there were an apparatus which would utilize the existing standard fluoroscope pedal.
In addition, on occasion the physician may need to view the fluoroscope image while an assistant maintains observation of the endoscope view, or vice versa. However, the arrangement disclosed in my aforementioned U.S. Pat. Nos. 4,993,464 and 5,127,444 always disables the endoscope view when the fluoroscope X-ray generator is enabled. On those occasions when simultaneous observation of the endoscope and fluoroscope views is needed, it would be desirable to permit the fluoroscope view to be observed without discontinuing the display of the endoscope view, while maintaining the advantages provided by the arrangement disclosed in my aforementioned U.S. Pat. Nos. 4,993,464 and 5,127,444.
SUMMARY OF THE INVENTION
As will be seen, the present invention overcomes these and other drawbacks associated with prior art devices for preventing accidental over-radiation of a patient and attending medical personnel during surgical procedures involving fluoroscopy and endoscopy. Stated generally, the present invention comprises an apparatus for simultaneous actuation of multiple foot pedal operated switches to control endoscopy and fluoroscopy equipment. The apparatus automatically disables the X-ray generator of the fluoroscope whenever the fluoroscope video signal is not being displayed on the operating room monitor. The apparatus employs the existing standard fluoroscope foot pedal for switching the X-ray generator of the fluoroscope. Hence problems associated with disconnecting the original pedal and replacing it with a special pedal to allow interposition of the switching device, and then removing the special switching device upon completion of the procedure to reestablish normal fluoroscope operation, are avoided.
Stated somewhat more specifically, the disclosed embodiments of the present invention comprises an apparatus for performing a surgical procedure involving end
Mulcahy John
Tilane Corporation
LandOfFree
Apparatus for concurrent actuation of multiple foot pedal... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus for concurrent actuation of multiple foot pedal..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for concurrent actuation of multiple foot pedal... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2865987