Apparatus for cleaning semiconductor wafers

Cleaning and liquid contact with solids – Apparatus – Miscellaneous

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C118S500000, C134S902000

Reexamination Certificate

active

06318389

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for carrying semiconductor wafers during the wafer cleaning process. During the semiconductor manufacturing process, the surfaces of wafers become contaminated with cutting and polishing residue, organics, metals and cleaning solution residue. Even extremely minor quantities of contaminants can negatively affect the wafer for subsequent handling steps or when it is used as a substrate for an electronic circuit. Many devices are on the market for effecting such cleaning and have been generally effective. However, as wafer specifications have become more stringent, so have the wafer cleaning requirements sometimes resulting in a lower yield rate. Further, price competition in the wafer and electronic device markets has also become more intense making manufacturing efficiencies even more important. Thus, scrap needs to be reduced as much as possible to help improve yield rate and maintain profitability.
A wafer can be cleaned by either or both of a spray wash and an immersion wash. While such devices and methods have been generally effective, more stringent specifications have resulted in a higher reject rate for the wafers and semiconductor devices being made from the wafers. Cleaning typically includes sequential cleaning steps, as are known in the art. Each cleaning phase is generally followed by a rinse step to remove the cleaning solution. In a sense, the rinse step is also a cleaning step whose chief purpose is to remove the cleaning solutions. Generally, the first cleaning step involves the application of a base such as ammonia followed by a water rinse step. After the first rinse step, the wafers are exposed to an acid such as hydrofluoric, fluoric or hydrochloric. If there is any ammonia carried with the wafers to the acid cleaning step, it will react with the acid and produce a salt which is a contaminant to the wafer. The acid treated wafers are rinsed again with water. After this subsequent water rinse, the wafers are exposed to isopropyl alcohol (IPA) in a vapor chamber to assist in removing the rinse water and to dry the wafers. All of the cleaning fluids must be extremely clean so as to not contaminate the wafers. Such cleaning process may be used at more than one point in the wafer manufacturing process.
During cleaning, wafers are carried in a carrier. The wafers are robotically placed in grooves in carrier rods in the cassette. The grooves retain the wafers in position in the cassette while exposing as much of the wafer surfaces as practicable to the cleaning and rinsing fluids. It has been found that the surfaces of the grooves will induce the formation or collection of residue from the cleaning and/or rinsing liquids on the wafers in the area where the faces of the wafer are adjacent the groove surfaces at a marginal edge of the wafer.
The use of grooves has been found to be particularly advantageous for holding wafers in position in the cassette. To robotically load and unload the wafers, the wafers must be accurately positioned which is accomplished by the use of narrow grooves in cassette rods. Thus, to continue to use current robotics and wafer processing equipment, narrow grooves have been preferred for accurately positioning the wafers. The grooves, although effective for use with robots, are believed to be a major contributor to the formation of the aforementioned spotting problem. Spots form on marginal edge portions of wafers where they are closely spaced from or in contact with carrier rod groove surfaces. Even though at one time the spots would have been considered minor defects, they need to be eliminated or reduced to improve the yield rate to maintain acceptable pricing and margins. It would also be desirable to continue to use cassettes with grooved rods because of their effectiveness at wafer retention, support and positioning which are also important to effective and efficient manufacturing.
The spots are a film or residue left when the cleaning and rinsing liquids are removed from wafers. It has been found that the incident rate of spot creation can be reduced by providing better drainage of cleaning and rinse liquids and more IPA in the area between the groove surfaces and the marginal edge portions of the wafer positioned in the carrier. This can be done while still providing the desired degree of wafer position tolerance in the cassette during cleaning.
Current cassettes have frames that are typically made of fused quartz which is expensive and make the cassettes difficult to repair. Fused quartz is desirable because it is resistant to degradation by the cleaning and rinsing fluids. Many times the cassettes will use grooved carrier rods made of a polymer that is resistant to degradation by the cleaning fluids. However, polymers acceptable from a degradation standpoint have tended to be soft and not resistant to wear caused by contact with the wafers. In order to obtain acceptable life from a wear standpoint, the area that contacts the wafers was made large, making the spotting worse. Carrier rods are also lacking in structural rigidity because of the properties of the polymer and need to be reinforced to support loads. A typical carrier rod is hollow polytetrafluoroethylene with, e.g., a graphite composite rod sealed inside for structural support. However, after some use, such carrier rods tend to leak cleaning fluid which attacks the reinforcing rod and contaminate the wafers being cleaned.
Thus, there is a need for an improved cassette and carrier rod. The present invention provides an improved cassette and carrier rod that will improve cleaning efficiency and thereby improve the wafer production yield rate while maintaining accurate positioning of the wafers so they can be handled robotically.
SUMMARY OF THE INVENTION
Among the several objects and features of the present invention may be noted the provision of an apparatus for carrying semiconductor wafers during cleaning that will improve cleaning efficiency; the provision of such an apparatus that will accurately for robotic loading and unloading; the provision of such an apparatus that is simple in construction requiring few parts; the provision of such an apparatus that is adapted to be used in various types of cleaning apparatus; the provision of such an apparatus that can have components subject to wear replaced; the provision of such an apparatus that has a long life; the provision of such an apparatus that is economical to manufacture; the provision of such an apparatus that can be easily loaded with a plurality of semiconductors and safely transport them to and thru the cleaning apparatus; the provision of such an apparatus that can be used in both immersion and spray type washers; the provision of such an apparatus that does not require major changes to the currently used cleaning and robotic devices; and the provision of such an apparatus that can be substantially entirely made of polymeric material.
The present invention involves an apparatus for holding a plurality of semiconductor wafers during cleaning. The apparatus includes a frame with a bottom, an open top and a longitudinal axis. A pair of carrier rods is secured to and extends between opposite ends of the frame and are in spaced apart relation and positioned on opposite sides of the longitudinal axis and between the longitudinal axis and the frame bottom. Each carrier rod has a plurality of transverse grooves in spaced apart relation along the length of the carrier rod and opening into the interior of the frame. Each groove in one carrier rod is substantially transversely aligned with a respective groove in the other carrier rod and is adapted to receive a semiconductor wafer therein for support in a generally vertical orientation. The grooves have an open top, a bottom surface and generally opposite side surfaces each facing a respective opposite side of a wafer. The grooves retain the wafer in the generally vertical orientation. The carrier rods are transversely spaced a distance less than the diameter of the wafer. The groove side surfaces

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for cleaning semiconductor wafers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for cleaning semiconductor wafers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for cleaning semiconductor wafers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2614087

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.