Chemical apparatus and process disinfecting – deodorizing – preser – Chemical reactor – Waste gas purifier
Reexamination Certificate
1998-10-29
2001-08-14
Tran, Hien (Department: 1764)
Chemical apparatus and process disinfecting, deodorizing, preser
Chemical reactor
Waste gas purifier
C422S173000, C422S178000, C110S211000, C110S212000, C431S005000
Reexamination Certificate
active
06274097
ABSTRACT:
This invention relates to an apparatus for cleaning pollutant-laden waste gas by regenerative thermal after burning.
Such plants for cleaning in particular waste air containing organic compounds such as solvents are known (cf. EP 0 472 605 B1). Each tower forms a chamber, the organic compounds in the waste air being burned in the combustion space connecting the upper ends of the two chambers. When waste air is supplied to the chamber in the first tower, it is preheated by the heated heat-retaining packing thereof, the organic compounds in the preheated waste air are burned in the combustion space, and the heat-retaining packing in the chamber in the second tower is heated by hot cleaned waste air. Then the supply of waste air is switched to the chamber in the second tower, while cleaned waste air is drawn off from the chamber of the first tower.
In the known apparatus, two pipes with a large diameter corresponding to the high throughput of such a cleaning apparatus and connected via connection pieces to a prechamber below each tower extend in practice in the longitudinal direction under the side-by-side towers for supplying waste air to be cleaned or loaded gas and for removing cleaned waste air or clean gas. The openings of the two connection pieces into the prechamber are provided with shut-off devices each operated by a control unit formed by a piston/cylinder unit disposed below the large pipe
Due to the prechamber disposed under each tower and necessarily having a suitable height for ensuring the function of the shut-off devices, and due to the control units disposed under the pipes, the known apparatus has a considerable height and thus corresponding weight. Also, a shaft or the like must be provided under each control unit for removal thereof and the fixed equipment thereof. Further, the prechambers for operating the shut-off devices under the towers form a dead volume which reduces the cleaning effect.
The problem of the invention is therefore to improve the cleaning power of the known regenerative thermal after burning apparatus while reducing dimensions, weight and costs.
Due to the division of the towers into a plurality of heat-retaining chambers and due to the switching chambers connecting two opposite heat-retaining chambers of the two towers in each case, the channels for supplying loaded gas and removing clean gas are combined together with the switching chambers into a compact unit in the inventive apparatus, so that the apparatus has a much smaller overall volume and weight than known waste gas cleaning apparatuses with regenerative thermal after burning.
The overall volume and weight of the inventive apparatus are reduced further if the two channels for supplying loaded gas with the intermediate switching chambers are disposed one above the other.
Furthermore, one achieves a substantial additional reduction of overall volume and weight of the inventive apparatus if the two towers are disposed at a distance apart so as to form a space and at least part of the unit consisting of the two channels with the intermediate switching chambers is disposed in this space. Moreover, the overall volume is considerably reduced if the control units for the shut-off devices are disposed in the space between the two towers.
Compared to a conventional waste gas cleaning apparatus with regenerative thermal afterburning, the weight and height of the apparatus can thus be reduced according to the invention by more than one third, and the ground plan thereof by about one sixth. This accordingly reduces production costs. It also permits the inventive apparatus to be set up e.g. inside buildings or on a roof.
The inventive apparatus can be delivered as one whole operable unit. The assembly of the apparatus including all electric supply and measuring devices and optionally also the flush gas pipework can thus be done exclusively in the factory, where tests and preliminary operation can also be performed. This shortens erection time on the building site by almost two thirds.
The whole plant can at the same time be supported on the frame bearing the two towers. The whole system need merely be placed on four concrete foundations. One can thus dispense with the elaborate steel substructure required by the known apparatus. Due to the low height of the inventive plant, one can also do without an elaborate stage and stair construction providing access to the combustion chamber. A simple ladder suffices.
The control units for operating the shut-off devices connecting the switching chambers alternately with the loaded gas supply channel and clean gas removal channel, and the flush device are tempered by being arranged in the space between the towers, so that they also work reliably at a cold ambient temperature, for example in the winter.
Due to the arrangement of the clean gas supply channel above the switching chambers and the loaded gas channel therebelow, all lifting rods for moving the By closing bodies up and down and their bearings are located in an area which is not reached by loaded gas- This substantially extends the life of the lifting rods and their bearings in particular when corrosive or dust-laden waste gases are to be cleaned. Suspended installation of the relatively heavy closing bodies on the lifting rods furthermore eliminates the danger of the lifting rods tilting. Also, the inventive apparatus is extremely easy to maintain. Work on the control units and shut-off devices can be done easily and safely because personnel need not go into the apparatus. The same applies to cleaning the lower area of the heat-retaining packings.
Moreover, only small pressure loss differences occur when the direction of gas flow is changed. Longer gas paths on the average result in the combustion space than hitherto although the volume thereof has remained the same, which has a positive effect on cleaning power. Due to the possibility of mounting the burner in the floor rather than on a side wall of the combustion space, and the resulting flame symmetry, there is no necessity to install costly metallic heat-resistant gas turbulators, in particular when the partitions dividing the heat-retaining chambers extend into the combustion space.
The burner can also be disposed on the ceiling of the combustion space, but it saves more space to position it on the floor thereof. Also, a plurality of burners can be provided. The burner or burners can likewise be replaced by other burning devices, for example electric heating elements.
While the lower area of the reactor must generally be insulated from the outside in known waste gas cleaning apparatuses with regenerative thermal afterburning, the surface to be insulated can be reduced by more than two thirds in the inventive apparatus.
The two towers are preferably divided in the inventive apparatus into three heat-retaining chambers by the partitions extending from the bottom to the top, two opposite heat-retaining chambers of the two towers being connected with one joint switching chamber and each of the three switching chambers being adapted to be connected with a flush gas pipe. This embodiment of the inventive apparatus with altogether six heat-retaining chambers achieves a cleaning power of 99.5%. If one control unit or shut-off device fails, the apparatus can be operated as a four-heat-retaining-chamber system instead of a six-heat-retaining-chamber system, still having a cleaning power of 98%. The necessary maintenance work on the failed control unit or shut-off device can be done during four-heat-retaining-chamber operation.
The switching chambers are preferably separated from the loaded gas supply channel and clean gas removal channel by lower and upper partitions, the two partitions of each switching chamber being provided with an opening to be closed by the closing body of the shut-off device.
The two openings of each switching chamber are preferably flush with each other, the two closing bodies for the two openings being displaceable between two stops and spring-loaded away from each other jointly on one lifting rod. The two stops are disposed
Schedler Johannes
Sefalidis Vassilios
Thalhammer Heimo
Chemisch Thermische Prozesstechnik
Mueller and Smith, L.P.A.
Tran Hien
LandOfFree
Apparatus for cleaning pollutant-laden waste gas does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus for cleaning pollutant-laden waste gas, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for cleaning pollutant-laden waste gas will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2523601