Adhesive bonding and miscellaneous chemical manufacture – Surface bonding means and/or assembly means therefor – With work feeding or handling means
Reexamination Certificate
2000-10-30
2002-12-17
Yao, Sam Chuan (Department: 1733)
Adhesive bonding and miscellaneous chemical manufacture
Surface bonding means and/or assembly means therefor
With work feeding or handling means
C156S107000, C156S109000, C156S285000, C156S244220, C156S500000
Reexamination Certificate
active
06494245
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to an automated system for applying sealant along the four perimeter edges of an insulated glass unit assembly. More particularly, the system utilizes a unique method of holding the glass panel in place and for applying the sealant material by a dispensing head that moves completely around the four perimeter edges of the insulated glass assembly in a single continuous motion.
BACKGROUND OF THE INVENTION
Insulating glass includes an assembly of two sheets of panels of glass separated by one or more spacers so that there is a layer of insulating air between the two panels of glass. To seal in the insulating layer of air, a sealant material must be applied to each perimeter edge of the glass panel in the space formed between the spacer and the edges of the glass panels. In order to form a good seal, the two glass panels must be accurately aligned relative to each other, and, in addition, the spacer along each edge of the glass assembly must be properly spaced and aligned relative to the two glass panels. As a still further condition for forming a good seal, the glass assembly and spacers must be maintained in proper alignment while the sealant material is being applied thereto. Finally, the sealant material must be applied in such a way that it is uniform and covers the entire edge of the glass assembly.
The application of adhesive or other sealant material to substrates is well known and is particularly well known in the insulated glass assembly production. In the manufacturing of insulated glass, it is important to secure that the perimeter of a unit is completely sealed. If this is not done, the result is the ingress of moisture or debris which eventually leads to the premature degradation of an insulated glass assembly.
In view of this difficulty, the prior art has proposed numerous methods and various apparatus to ensure uniform application of sealant material in the assemblies. Typical of the known arrangements is extrusion heads which are either automated or manual. One of the primary difficulties of the known arrangements is that the depth of the sealant material cannot be uniformly applied in width or depth about the perimeter and further, the known arrangements are limited in that they do not positively avoid entrapment of air within the sealant material. A further limitation is that the most extreme perimeter of the sealant material cannot be perfectly perpendicular relative to the substrate surface. The result of this is, therefore, surface irregularity about the perimeter as opposed to a smooth planar finish which would be more desirable from an aesthetic point of view as well as a structural point of view.
Although apparatus has been developed in the past for handling insulating glass assemblies and applying sealant material to the edges, such apparatus has not been totally satisfactory. In one prior art system, a stationary header applies the sealant material to the glass assembly as it moves along a work support. However, one of the problems of such an arrangement is that it is difficult to keep the glass assembly and spacers properly aligned, relative to each other as it moves relative to the stationary header. As a result, defects in the seal are likely to occur.
In another prior art arrangement, the sealant material is applied to a frame formed by the aluminum spacers, and then the spacer frame with the sealant material applied thereto is taken to another station where the glass panels are adhered to the spacer frame. The glass assembly is then transferred to a vertically arranged heating and compression station to heat and compress the assembly. As will be understood, such an arrangement is time consuming, expensive, requires many work stations and is not automatic. Accordingly, this system has also not been entirely satisfactory.
In view of the existing limitations in the sealant applying art, there exists a need for an improved new method of disposing sealant between, for example, insulated glass assemblies. Further, there remains a need for an automated system for applying sealant material by a dispensing head that moves completely around the perimeter of the insulated glass assembly in a single continuous motion.
DESCRIPTION OF THE PRIOR ART
An apparatus for automatically applying sealant material in an insulated glass assembly of various designs, configurations, styles and materials of construction have been disclosed in the prior art. For example, U.S. Pat. No. 5,650,029 to LAFOND discloses a method for applying sealant material between spaced-apart substrates in an insulated glass assembly. The method of application of extrusion nozzles and smoothing plates. The smoothing plates move in concert with the extrusion nozzles to ensure the uniform distribution of the sealant material from the spacer to the perimeter of the substrates. The smoothing plates ensure a uniform and planar surface at the perimeter. This method of sealant material application to the insulated glass assembly is automated, and accordingly, the sealant material can be applied in an expedited manner with a high degree of precision of uniformity. This prior art patent does not disclose or teach the particular structure and design of the present invention for an automated system that automatically applies sealant material around the perimeter and between glass panes in an insulated glass assembly in a single continuous motion.
U.S. Pat. No. 4,826,547 to LENHARDT discloses a process and apparatus for applying a sealing mass to seal the space between panes of insulating glass using a sealing nozzle. The apparatus includes at least one sealing nozzle and at least one covering and stripping plate. The stripping plate permits the defect-free and bubble-free filling of panes of insulating glass with a sealing material, even in the corner areas, in a uniform manner. This prior art patent does not disclose or teach the particular structure and design of the present invention for an automated system that automatically applies sealant material around the perimeter and between glass panes in an insulated glass assembly in a single continuous motion.
U.S. Pat. No. 4,295,914 to CHECKO discloses an apparatus for applying sealant material to an insulated glass assembly. The apparatus includes a work supporting table for receiving the glass assembly, and an aligning apparatus for properly orienting and aligning the glass panels and spacers of the glass assembly relative to each other and relative to a sealant applying nozzle/head. The sealant applying apparatus also includes a clamping assembly having clamping members for clamping the glass assembly in order to maintain the glass assembly in its properly aligned position so that the sealant material can be applied to the space between the perimeter edges of the glass assembly. The sealant applying head is mounted for movement relative to an edge of the glass assembly which includes a nozzle assembly for applying the sealant material to the glass assembly as it moves relative to it. This prior art patent does not disclose or teach the particular structure and design of the present invention for an automated system that automatically applies sealant material around the perimeter and between glass panes in an insulated glass assembly in a single continuous motion.
U.S. Pat. No. 5,762,738 to Lafond discloses a method for applying sealant material between spaced-part substrates in an insulated glass assembly. The method of application is sequential and employs extrusion nozzles and smoothing plates. The smoothing plates move in concert with the extrusion nozzles to ensure the uniform distribution of the sealant material from the spacer to the perimeter of the substrates. The smoothing plates ensure a uniform and planar surface of the perimeter. This method of sealant material application to the insulated glass assembly is automated, and accordingly, the sealant material can be applied in an expedited manner with a high degree of precision and uniformity. This prior art patent does not disclose or teach the partic
Sutton Ezra
Yao Sam Chuan
LandOfFree
Apparatus for automatically and continuously applying... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus for automatically and continuously applying..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for automatically and continuously applying... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2997218