Computer graphics processing and selective visual display system – Computer graphics processing – Attributes
Reexamination Certificate
2000-03-17
2003-02-04
Jankus, Almis R. (Department: 2671)
Computer graphics processing and selective visual display system
Computer graphics processing
Attributes
C345S584000, C345S586000, C345S426000
Reexamination Certificate
active
06515674
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to the field of computer graphics and pertains more particularly to an apparatus for and method of rendering three-dimensional (3D) objects with parametric texture maps in a computer graphics system.
2. Discussion of the Prior Art
Modern computer systems have become increasingly graphics intensive. Dedicated special purpose memories and hardware have been developed to meet this need. A conventional computer graphics system includes a display device having a two-dimensional (2D) array of light emitting areas. The light emitting areas are usually referred to as pixels which is an abbreviation for picture elements. Such a graphics system typically employs hardware, software, or both to generate a 2D array of values that determine the colors or shades of grey that are to be emitted from the corresponding pixels of the display.
Computer graphics systems are commonly employed for the display of 3D objects. Typically, such a system generates what appears to be a 3D object on a 2D display by generating 2D views of the 3D object that is modeled in the computer memory. The 2D view of a 3D object which is generated at a particular time usually depends at least on a spatial relationship between the 3D object and a viewer of the 3D object at the particular time. This spatial relationship may be referred to as the view or eye point direction. For example, a car is a 3D object having a front and a back. However, whether one can see the taillights will depend on where one is viewing the car from. A view direction that is directly in front of the car will not show the taillights while a view direction that is directly behind the car will.
The process by which a computer graphics system generates the values for a 2D view of a 3D object is commonly referred to as image rendering or scan conversion. The graphics system usually renders a 3D object by subdividing the 3D object into a set of polygons and rendering each of the polygons individually.
The values for a polygon that are rendered for a particular view direction usually depend on the surface features of the polygon and the effects of lighting on the polygon. The surface features include details such as surface colors and surface structures. The effects of lighting usually depend on a spatial relationship between the polygon and one or more light sources. This spatial relationship may be referred to as the light source direction. For example, if there is only one light source, the side of the object closest to the light source will be illuminated while the side of the object furthest from the light source might be in shadow.
Typically, the evaluation of the effects of lighting on an individual pixel in a polygon for a particular view direction involves a number of 3D vector calculations. One of ordinary skill in the art will recognize that the standard Blinn/Phong lighting equation is as follows:
I=k
a
I
a
+k
d
I
d
(
N·L
)+
k
s
I
s
(
N·H
)
n
(1)
where k
a
, k
d
, and k
s
are constants. Equation (1) states that the light intensity I for a particular pixel is a function of the sum of the ambient contribution I
a
, the diffuse contribution I
d
, and the specular contribution I
s
at that location. Lighting calculations based on Equation (1) include floating-point, square-root and divide operations when used with normalized vectors. Such calculations are usually time consuming and expensive whether performed in hardware or software.
One conventional method for reducing such computation overhead is to evaluate the effects of lighting at just a few areas of a polygon, such as the vertices, and then to interpolate the results across the entire polygon. Examples include methods which are commonly referred to as flat shading and Gouraud shading. Such methods usually reduce the number of calculations that are performed during scan conversion and thereby increase rendering speed. Unfortunately, such methods also usually fail to render shading features that are smaller than the areas of individual polygons. If the polygons are relatively large, the view will be noticeably distorted.
One conventional method for rendering features that are smaller than the area of a polygon is to employ what is commonly referred to as a texture map. A typical texture map is a table that contains a pattern of color values for a particular surface feature. For example, a wood grain surface feature may be rendered using the surface and a texture map that holds a color pattern for wood grain. Unfortunately, texture mapping usually yields relatively flat surface features that do not change with the view direction or light source direction. The appearance of real 3D objects, on the other hand, commonly do change with the view direction, light source direction, or both. These directional changes are commonly caused by 3D structures on the surface of the object, that is, the object is not perfectly flat. Such structures can cause localized shading or occlusions or changes in specular reflections from a light source. The effects can vary with view direction for a given light source direction and can vary with light source direction for a given view direction. These directional changes should be accounted for to provide greater realism in the rendered 2D views.
One conventional method for handling the directional dependence of such structural effects in a polygon surface is to employ what is commonly referred to as a bump map. A typical bump map contains a height field from which a pattern of 3D normal vectors for a surface are extracted. The normal vectors are used to evaluate lighting equations at each pixel in the surface. Unfortunately, such evaluations typically involve a number of expensive and time consuming 3D vector calculations including division and square roots. This can result in decreased rendering speed or increased graphics system cost.
A definite need exists for a system having an ability to meet the efficiency requirements of graphics intensive computer systems. In particular, a need exists for a system which is capable of rendering 2D views of a 3D object in a skillful manner. Ideally, such a system would have a lower cost and a higher productivity than conventional systems. With a system of this type, system performance can be enhanced. A primary purpose of the present invention is to solve this need and provide further, related advantages.
SUMMARY OF THE INVENTION
A graphics system is disclosed that employs parametric texture maps. The graphics system renders surface features of a 3D object in a manner that is direction dependent but without the time consuming and expensive calculations involved in the evaluation of lighting equations on a per pixel basis. A parametric texture map holds a set of parameters that define a surface structure in a manner in which the appearance of the surface structure varies in response to a direction vector. The direction vector may be any user-defined vector including a light source vector or a half-angle vector. The parameters are those of a predetermined equation, the evaluation of which does not involve vector calculations. The equation may take any form including a polynomial equation or a non-polynomial equation. The graphic system renders a polygon with the surface structure using the equation.
REFERENCES:
patent: 5544291 (1996-08-01), Gilley et al.
patent: 2714505 (1995-06-01), None
Dana, K. et al. Reflectance and Texture of Real-World Surfaces. ACM Trans. on Graphics. Jan., 1999, vol. 18, No. 1.*
Malzbender, T. et al. Polynomial Texture Maps. ACM Siggraph 2001. Aug. 12-17, 2001. pp. 519-528. See p. 52, section 2, paragraph 2.*
H. Rushmeier et al., “Applying Shape from Lighting Variation to Bump Map Capture,” Proc. Eurographics, vol. 97, pp. 35-47 (1997).
Miller G, et al, “On-The-Fly Texture Computation For Real-Time Surface Shading”, IEEE Computer Graphics and Applications, IEEE INC. New York, US, vol. 18, No. 2, Mar. 1998, pp. 44-58, XP000927335, ISSN: 0272-1716.
Gelb Daniel George
Malzbender Thomas
Wolters Hans Juergen
LandOfFree
Apparatus for and of rendering 3d objects with parametric... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus for and of rendering 3d objects with parametric..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for and of rendering 3d objects with parametric... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3156679