Apparatus for altering the physical properties of fluids

Plastic article or earthenware shaping or treating: apparatus – Means applying electrical or wave energy directly to work

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S443000, C264S478000

Reexamination Certificate

active

06629831

ABSTRACT:

FIELD OF INVENTION
This invention relates to varying physical properties of materials and more particularly to a mechanical technique for controlling viscosity, point velocity and pressure of a fluid through the creation of predetermined dynamic micro-shear, velocity and pressure fields within a fluid.
BACKGROUND OF THE INVENTION
Fluid processing, particularly control of overall flow behavior, is vital to various industries. For example, how to make plastics melt to flow easily without degradation is the most crucial issue for plastics molding industry. The ability to transport crude oil is not only critical to these companies in that business, but also is critical to the whole society. In modem industry, fluids are extremely diverse in origin and composition, ranging, for example, from fermentation broths and food products to mineral slurries and polymer melts. However, underlying this diversity are certain properties that determine the overall flow behavior. These properties generally include viscosity, pressure, and velocity.
The viscosity of a fluid refers to its resistance to flow, i.e. the “stickiness” of the liquid. For instance, honey has a much higher viscosity than water. In general, the lower viscosity a fluid has, the more easily it will flow. Fluid is classified into two categories according to viscosity: Newtonian fluids and non-Newtonian fluids. A Newtonian fluid such as water has constant viscosity under a certain temperature. A non-Newtonian fluid refers to a fluid whose viscosity is variable under a constant temperature. Plastics melt, crude oil and pulp fall into this latter category. Pressure normally includes static pressure and dynamic pressure. Static pressure comes from gravity or external forces while dynamic pressure largely comes from a fluid's internal velocity inconsistencies. For non-Newtonian fluids, viscosity depends on both temperature and shear or “friction”, which is influenced by dynamic pressure and thus velocity inconsistency. Although these properties influence each other, different applications pay more attention to some of them versus the rest.
Various conventional fluid processing techniques have been used to control these physical properties to satisfy industry needs. These techniques include using heat and shear for viscosity control, and using a pump for pressure control and also for velocity control. Though these techniques are widely used, they have their limits that they can not address all the needs, sometimes create problems, and are sometimes too expensive to use. These issues leave the door open for new fluid processing technologies.
By way of example, the petroleum industry is a huge industry that controls the lifeline of our society. The petroleum industry is composed of integrated oil companies and oil field equipment and services companies as well as pipeline, refineries and resellers. Due to the high cost of project implementation and competition, technology plays an important role in this industry.
As a result, fluid handling is a major issue in petroleum industry. Crude oils produced from wellbores are normally very viscous, which creates challenges for both oil recovery and oil transportation. To make this kind of oil flow through an oil pipeline, a high pressure has to be applied to the oil which has to be maintained throughout the entire pipeline. This is very costly and very inconvenient. The high viscosity of oil is one of the major reasons that so many pumping stations are required. An effective way to reduce viscosity would significantly reduce cost. In the past, as illustrated by U.S. Pat. No. 4,945,937, various attempts have been made to lower the viscosity of crude oil. Moreover, while this patent refers to the use of ultrasonic energy in such a process, it turns out that a wax crystal modifier must be added. Moreover, just adding energy to a tank does not significantly alter the physical characteristics of the fluid.
Moreover, a large problem for oil pipelines is oil spill caused by erosion. Localized high dynamic pressure is one of the causes of erosion. How to control dynamic pressure and thus prevent or deter severe erosion presently is an open question.
Another challenge comes from recovering viscous oil from oil wells. Some wells are filled with viscous petroleum liquids such as heavy crude oil and bitumen that makes them not pumpable with conventional pumping equipment. The high cost associated with well drilling makes it highly necessary to find new technologies to solve the problem.
As to papermaking, the paper industry is both energy intensive and capital intensive. The industry requires high capital outlays for mills and equipment. As a slowly moving industry, it is characterized by boom-and-bust periods. No company can respond instantly to increased demand, because construction of equipment and facilities takes at least four years to complete. There is thus a need for new technologies in paper industry.
The paper industry is faced with a number of problems and challenges. Pulp is the basic building block of paper and paperboard products. It is predominately made from wood. Wood pulp, like other types of pulp, is manufactured by separating the wood fibers which are held together by a material called lignin. The fibers can be separated by either mechanically tearing them apart or by chemically dissolving them.
Pulp handling, including manufacturing, transporting and processing, is central to the paper manufacturing process. Pulp, with its viscous nature and other properties, requires sophisticated mechanical systems. The current manufacturing system requires large amounts of energy, which are costly and are not necessarily environmentally friendly. Lack of technology innovation makes the industry operate in a non-optimized way. As evidenced by U.S. Pat. Nos. 4,013,506, 5,213,662, 5,705,032, and 5,472,568 in the last 20 years, research has been done on how to handle pulp more efficiently. Still, new technology for pulp handling remains critical, especially with respect to energy and environmental concerns.
Not only are fluid handling efficiencies important to the paper making industry, in the marine field, propulsion and other problems are prevalent. Noise produced by a propeller is one of the sources that expose a submarine to detection. Noise is mainly caused by uneven pressure distribution, which causes a propeller to vibrate in an unwanted fashion. How to control the uneven pressure distribution and thus reduce noise is a challenge in this industry.
Another big concern is that of cavitation. The major problem encountered with cavitation is its violent nature. Upon the collapse of the vapor “cavities” produced by cavitation a small implosion occurs. These implosions can generate tremendous noise and can be violent enough to damage the blade sections, causing accelerated erosion of the blade surface. As well, the presence of the cavities often changes the performance of the blade section unfavorably. For severe cavitation of a propeller under heavy load, the propeller can become substantially enveloped in cavitation causing thrust breakdown of the propeller and thus loss of thrust. Thrust breakdown is one of the factors that limits the maximum speed of a ship. Eliminating or alleviating the severity of cavitation will not only protect the propeller, but also opens the door for increasing ship speed. Cavitation occurs when the local pressure drops below the fluid vapor pressure. By the very nature of lifting surfaces, low-pressure regions occur on the foil surface that at sufficiently high loads will eventually cavitate. Once again, pressure control remains a question.
In another area, the brewing industry is a very old industry. Competition is intense due to its maturity and globalization, and how to lower manufacturing cost by reducing cycle time is thus important. Typically, the brewing process begins when the malt suppliers soak the barley grain in water, thereby facilitating germination. Then the mill uses steel rollers to crack the grain open before it enters the mash tun. In the mash tu

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for altering the physical properties of fluids does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for altering the physical properties of fluids, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for altering the physical properties of fluids will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3120699

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.