Apparatus for actuating a passenger safety system

Electrical transmission or interconnection systems – Vehicle mounted systems – Automobile

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C180S271000, C280S735000, C296S068100, C701S045000

Reexamination Certificate

active

06304004

ABSTRACT:

BACKGROUND AND SUMMARY OF THE INVENTION
This application claims the priority of German patent 198 29 756.4, filed Jul. 3, 1998, the disclosure of which is expressly incorporated by reference herein.
The invention relates to an apparatus for the actuation of a passenger safety system in a motor vehicle which is controllable at the input side at least by a deceleration sensor and comprises a signal evaluation with a programmable actuation logic as well as a plurality of output stages which in the event of actuation issue a firing current to the particular passenger safety components that are to be actuated and are adapted in their electrical/electronic performance to the particular passenger safety component. The invention also relates to a method for adapting such an actuation control apparatus to the existing components of a passenger safety system of a vehicle.
Various models of vehicles are equipped with different passenger safety systems and corresponding actuation control apparatus. There are vehicles with belt tighteners, airbags on the driver and passenger side, deployable roll bars, side air bags, window bags, knee bags and back seat air bags. Usually a model contains only a selection of these passenger safety components.
Different variants of equipment are provided regarding sensing devices for judging conditions relating to the passengers, such as whether seat belts are fastened, seat occupancy by a person or a child, passenger position or passenger weight etc., the state of which affects the decision to deploy, since the restraining devices are activated depending on the severity of an accident and the condition of the passengers recognized by means of a deceleration sensor (known, for example, from German patent document DE 40 23 109 A1). Thus, depending on whether the passenger is belted or not, for example, different deployment thresholds for deploying the airbag are set for the deceleration signal.
Different equipment is also available with regard to the sensing system for detecting factors relating to crash parameters. For example, an anticipatory or pre-crash sensing system may be present which detects by means of radar measurement, for example, the relative velocity of motion toward the object of a collision just before the crash event and feeds this information to the actuation control device in order to influence the decision to actuate (known, for example, from German patent document DE 44 26 090 A1). It is also known to detect crash parameters by deformation sensors disposed near the outer skin of the vehicle's body, which measure for example the rate of intrusion, so as to indicate the collision energy based on the deformation and velocity of the intrusion (known, for example, from German patent document DE 43 24 753 A1).
It is known to use for every model variant a specific control apparatus adapted to the multi-component passenger safety system and the sensing equipment on hand, but this makes stocking the equipment very expensive. To keep the many various control apparatus within bounds, there is an increasing tendency in car manufacture to install a control apparatus covering all variants and to adapt it in a one-time parametrization procedure to the desired variant (compare German patent document DE 196 18 161 C1, for example). This can be done by means of coding switches to be set manually or by entering an appropriate data set into a nonvolatile memory. Applied to an actuation control apparatus, such parametrization consists especially in informing the actuation control apparatus about which passenger safety components and which sensing equipment for detecting factors relating to the passengers and/or to the crash parameters are present in the vehicle. As a result of the parametrization the final stages provided in the actuation control apparatus are shut off from the passenger safety components not installed in the vehicle or just the tests of the final stages which recognize the absence of a module are ignored. Also, all self-testing procedures are adjusted to the specific model variant so that no unnecessary error signals will be generated due to passenger safety or sensory components that are not provided. Lastly, the conditions for actuation in the individual end stages which fire the primer capsules of the associated passenger safety components are adjusted according to the sensory components that are present.
One typical actuation control apparatus covering all variants is controlled at the input end at least by a deceleration sensor and comprises a signal evaluation with a programmable actuation logic as well as several end stages (driver stages) which, in case of actuation, send an actuation current to the passenger safety components that are to be operated in the particular case and must be present in a number corresponding to the maximum equipment. The output stages must be adapted in their design to the primer capsule or in general to the actuator of the associated passenger safety component, and especially the output stages must be able to deliver a sufficient ignition current. The term “actuator” here comprises both the primer capsule and the actuation mechanism in reversible safety systems, such as for example a reversible belt tightener.
European patent document EP 0 842 824 A1 discloses an actuation control apparatus in which each output stage forms together with a memory a module which stores activation information relating to the controlled primer capsule. For example, a threshold value of “1” is assigned to the modules for the belt tighteners and stored, and a threshold value of “2” is assigned to the modules for the airbags and stored. The default threshold values are established to depend on the sensing equipment for detecting factors relating to the passengers or to crash parameters for the purpose, for example, of setting a maximum threshold level so as to suppress the deployment of a front seat passenger airbag if that seat is unoccupied. In the case of a dangerous collision the central unit of the actuation control apparatus conveys parallelly to all modules the threshold value corresponding to the class of accident detected, e.g., “1” or “2”, as controlling information. Then only those output stages are activated whose activation information or threshold value is in a predetermined relationship to the conveyed activation information or threshold. The decision whether the particular output stage is to be activated in the accident is performed therefore in the modules themselves, not centrally. The central unit and the interface to the output stages are thus unburdened by the parallel decision making. A disadvantageous high interface frequency can thus be avoided and nevertheless rapid activation is made possible. Even if the activation information stored in the module can be flexibly established, it is however also referred to the associated output stage, which in turn is adapted to a fixedly associated safety component.
German patent document DE 196 27 877 A1 discloses an activation control apparatus with a safety condenser (autarchic condenser), which in the event of a failure of the on-board wiring can simultaneously provide the actuation energy for the activation of several safety components. The activation current of each actuator is pulse-width modulated such that the firing energy required for the particular actuator is established through the pulse-pause ratio of the activation current. Thus in comparison with the state of the art, where a separate autarchic condenser is used for each output stage, a saving is achieved because with the one autarchic condenser several actuators can be supplied simultaneously.
In a generic control apparatus comprising all equipment variants, output stages for passenger safety components not incorporated in the vehicle remain unused and the corresponding terminals are not occupied. This is unavoidable, as a rule, because many components, such as the deployable roll bar and rear-seat airbags are hardly ever present together in the same vehicle. In view of the rapidly improving av

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for actuating a passenger safety system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for actuating a passenger safety system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for actuating a passenger safety system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2576042

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.