Apparatus (cuvette) for taking up and storing liquids and...

Chemistry: analytical and immunological testing – Optical result – With claimed manipulation of container to effect reaction or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C436S180000, C422S105000, C422S105000, C356S246000

Reexamination Certificate

active

06214626

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an apparatus (cuvette) for taking up and storing liquids and for carrying out optical measurements
2. Description of the Background of the Invention
In vitro diagnostic methods are increasingly characterized by automation of the tests and measurement procedures to be carried out. The background to this requirement comprises, on the one hand, the desire to exclude individual factors in the manipulation and carrying out by any operating staff and, on the other hand, the increasingly high costs associated with use of staff.
The development and carrying out of chemical methods of protein measurement in automated laboratory operation thus make great demands on the knowledge of the technical procedure and quality assurance.
The growing demands on the specificity and sensitivity of the tests and the simultaneous requirement for greater output by an analyzer therefore make it necessary to extend previous concepts of the manipulation of liquids. To carry out a chemical test for proteins, as a rule two types of liquid starting components are required: the sample obtained from the patient to be investigated, and the reagent components necessary for the diagnostic result.
While the sample comprises, after any necessary preparative steps (centrifugation, removal of cellular constituents or the like) have been carried out, only one component, the reagent is frequently composed of several constituents.
In the technical procedure for a diagnostic test, the sample and the test components must frequently be taken up in a particular sequence. With most analyzers, this is effected by a pipetting apparatus which carries out these steps successively or else combined in a suitable way. Between the individual tests, the parts of the pipetting apparatus coming into contact with the liquid, such as the inside and outside of the needle, are washed by a suitable cleaning solution so that they are available again without contaminated portions to take up the following sample or test liquids. Similar processes are carried out to clean reusable reaction vessels.
This process described above is thus suitable for continuous and automatic operation as long as the requirements for the cleaning conditions and the quality of the cleaning process are sufficiently consistent such that there are no measurable effects on a subsequent test due to constituents which may be bound by adsorption to the surface, or they can be precluded by other quality assurance measures in the test.
Unfortunately, many of the more recent diagnostic tests, such as the range of tumor markers or microbiological tests, now have no firmly defined diagnostically relevant region of measurement. In the case of tumor markers, it is necessary to determine all values above a particular threshold, and in microbiology it is necessary to be able to measure down to the region of a few molecules.
These requirements, therefore, frequently no longer permit the components coming into contact with the liquids to be cleaned by repeated washing without additional measures. In addition, traces of constituents of the cleaning solution remaining on the surface might themselves lead to irreversible falsification of the result. On the other hand, as the requirements increase there is a very large increase in the consumption of and thus the costs of cleaning solution. Measures to improve the cleaning, while at the same time reducing consumption require additional apparatus measures (heating the cleaning solution, source of ultrasound or the like).
In order to avoid all these difficulties, many suppliers of diagnostic analytical systems therefore already offer disposable articles for pipette tips and for reaction vessels. Another approach is to use ready-packaged test modules. In this case, the necessary constituents of the reagent are prepared so that it is now necessary only to add a sample and mix the reagent components.
The disadvantage of the last-mentioned process is the provision of the test components for the individual test, their preservation and storage inside and outside the analyzer. These measures can usually be implemented only at considerably more cost than removal of the test liquid from larger storage bottles. The technical procedure for tests in an analyzer usually entails separate transfer of liquids and provision of reaction vessels. In this case, the liquids are transferred by metering systems, which are coupled to movable units (X-Y-Z transfer arms), to the location of the reaction vessel when, possibly after further incubation steps, the reaction fluid present in the vessel is measured.
Thus, prior art analyzers involve use both of disposable articles for the metering in the form of exchangeable tips and of disposable articles as reaction vessels which are fed on demand continuously to a processing unit.
This procedure makes it possible to carry out measurements completely without carryover, it being necessary to use at least one exchangeable tip and one reaction vessel per analytical result. This results in a considerable contribution to the overall cost by consumables, which may be of the order of DM 0.05-0.30 per consumable article in the case of disposable articles suitable for automated equipment. In addition, the individual consumable articles must be processed inside the automatic analyzer. The taking up of the exchangeable tip, the liquid transfer and the discarding of the used tip on the one hand, and the feeding of disposable reaction vessels mean that a large number of electromechanical actuation units are required. The entire technical procedure is thus very time consuming. This has direct effects on the speed and the output of an automatic analyzer.
SUMMARY OF THE INVENTION
The object of the invention was thus, in order to overcome the disadvantages described with the requirements mentioned, and in order to make simpler technical operation possible by combining several process steps and achieve less costly use of material, to develop a novel reaction vessel which permits at the same time simultaneously the taking up of liquids, the storage of the test components and the carrying out of optical measurements. The object has been achieved according to the present invention by constructing a reaction vessel with an additional apparatus for taking up liquids, it being possible at the same time for the apparatus to be processed in the same manner as an exchangeable tip inside the analyzer.
The reaction vessel must, in order to be amenable to optical measurements, consist of a light-transmitting material such as, for example, poly(methyl methacrylate), polypropylene or the like.
Used for taking up the liquid components is an inlet channel which is attached to the underside of the reaction vessel and is in the form of an extended tube, having a diameter complying with the requirements for the precision of the removed volumes of liquid and a pointed profile. In order to ensure, when the liquid is taken up, that the liquid remains inside the reaction vessel, the top opening of the inlet apparatus is located above the base of the reaction vessel part which is designed as cuvette. This makes it possible, in a simple manner, by applying a reduced pressure, for volumes to be taken up from storage bottles and delivered completely into the cuvette. It is possible at the same time for any remaining residues of liquid to be delivered by applying a gas pressure. The achievable precision of liquid uptake is comparable to the precision achievable with commercially available exchangeable tips and is a few percent with volumes of 1-10 microliters. It is furthermore possible for the outside of the tip to be rinsed by conventional washing stations.
All the parts relating to the reaction vessel and required for carrying out optical measurements must likewise consist of a light-transmitting material in order to ensure optical transmission. The reaction vessel itself can be designed in a round, rectangular or polygonal shape, which is determined by the manufacturing and p

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus (cuvette) for taking up and storing liquids and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus (cuvette) for taking up and storing liquids and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus (cuvette) for taking up and storing liquids and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2521483

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.