Apparatus and processes for the massproduction of...

Semiconductor device manufacturing: process – Making device or circuit responsive to nonelectrical signal – Responsive to electromagnetic radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S060000, C438S095000, C136S260000, C136S264000

Reexamination Certificate

active

06423565

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to apparatus and processes for the mass production of low cost photovoltaic modules and, more specifically to an inline continuous vacuum apparatus and process for fabricating the critical semiconductor layers, which together with attendant non-vacuum processes, are all accomplished at high throughput.
BACKGROUND OF THE INVENTION
Photovoltaic (PV) modules are used to generate electricity from sunlight by the photovoltaic effect. It has been recognized for decades that if these modules could be mass produced at low cost, they could be used to meet a considerable portion of the world's energy needs. Major companies, such as Royal Dutch/Shell and BP-Amoco, have stated that PV modules have the potential to become a major energy source and that their use has significant benefits to the global environment. However, for these benefits to be realized, PV modules must be produced at many times the current volume and at costs below $100/m
2
, as discussed by Bonnet et. al. in “Cadmium-telluride material for thin film solar cells”, J. Mater. Res., Vol. 13, No. 10 (1998). Currently, PV modules are manufactured in small quantities at costs of about $500/m
2
. About one hundred times the current yearly production is required to sustain a PV module manufacturing capacity that can contribute just 5% of the current electricity generated. Consequently, the manufacturing volume of PV modules needs to be greatly increased and costs significantly reduced.
To realize the required increases in production volume and decreases in manufacturing costs, PV modules must be produced as a commodity. Commodity level manufacturing requires innovation to develop highly automated production processes and equipment, which are designed to specifically fabricate the commodity product. Commodity manufacturing necessitates high production speeds (high throughput), minimal labor costs, and a continuous process flow. Low capital costs and ease of expanding production capacity also facilitate commodity manufacturing. There are a variety of known PV devices, but only the cadmium telluride (CdTe) thin film PV device has the potential to satisfy the requirements for commodity manufacturing.
Since 1974, there have been many industrial efforts to create technologies for CdTe PV module manufacturing. Most of these industrial efforts, as exemplified by the teachings of U.S. Pat. Nos. 4319069, 4734381, and 5501744, have been terminated because of fundamental inadequacies in their manufacturing technologies. To date, no technology suitable for commodity level manufacturing of CdTe PV modules has been developed, thus demonstrating the need for innovation in this area.
The most common CdTe PV cells are thin film polycrystalline devices, in which the CdTe layer is paired with a cadmium sulfide (CdS) layer to form a heterojunction. The thin films of a CdS/CdTe PV device can be produced through a variety of vacuum and non-vacuum processes. Of the many types of thin film deposition methods, sublimation in vacuum is most amenable to commodity manufacturing. This is because vacuum sublimation of CdS/CdTe PV modules exhibits deposition rates 10 to 100 times higher than any other PV module deposition method. Vacuum sublimation of the semiconductor layers for CdS/CdTe PV modules can also be performed in modest vacuum levels and does not require costly high vacuum equipment. Vacuum deposition methods for other thin film PV devices require costly, complex high vacuum equipment and results in low throughput.
Due to the high rate of deposition and low capital cost, the CdS/CdTe thin film cell fabricated by vacuum sublimation is the most suitable for commodity level manufacturing of PV modules. However, cadmium is a Group B carcinogen. According to U.S. government regulations, the quantity of this material which can be lawfully released into the environment or into an occupational setting is extremely small. The known prior art in CdS/CdTe vacuum sublimation requires process and hardware innovations to achieve occupational and environmental safety as required by federal regulations, as well as commodity scale manufacturing.
One known configuration for a CdTe device is the back wall configuration, in which the thin films are deposited onto a glass superstrate, hereinafter referred to as a substrate. The CdTe device is most often fabricated on a glass substrate coated with a transparent conductive oxide (TCO) film onto which other film layers are deposited in the following order: a) a CdS film, b) a CdTe film, c) an ohmic contact layer, and d) a metal film. Along with the deposition of these films, many heat treatments are also needed to enhance the device properties. The TCO and the metal films form the front and back electrodes, respectively. The CdS layer (n-type) and the CdTe layer (p-type) form the p
junction of the device. The cells are deployed with the substrate facing the sun. Photons travel through the glass and TCO film before reaching the p
junction of the device. A module is formed by interconnecting individual cells in series to produce a useful voltage.
Thus, a process for manufacturing CdS/CdTe modules includes the following steps: 1) cleaning the TCO coated glass substrates, 2) heating the substrates, 3) depositing an n-type CdS layer, 4) depositing a p-type CdTe layer, 5) performing a CdCl
2
treatment to improve CdTe grain structure and electrical properties, 6) forming a p+ ohmic low resistance contact layer to improve current collection from the CdTe, 7) depositing a metal layer (metallization) to form the back electrode, 8) scribing the film layers into individual cells, 9) interconnecting the cells in series and providing a means of electrical connection to the module, and 10) encapsulating the finished module.
All of the prior art methods for the production of CdTe modules have limitations that render them unsuitable for commodity level manufacturing. For example, prior art methods of CdCl
2
treatment are disconnected, low throughput batch operations, rather than continuous flow processes. These batch type processes are inefficient and involve extremely high costs in order to increase throughput to the commodity manufacturing level. Most of the known methods of CdCl
2
treatment also require rinsing, which generates liquid wastes that contain cadmium Known methods of ohmic contact formation are also batch type processes that exhibit low throughput rates. Prior art metallization steps also exhibit low throughput and require costly process equipment. It is necessary to improve the current methods of CdCl
2
treatment, ohmic contact formation, and metallization in order to achieve high throughput continuous processes.
Prior art methods for scribing the layers to form a module include laser scribing, mechanical scribing, and abrasive blasting. Known laser scribing methods used in the PV industry are associated with low production speed and high capital cost. Laser scribing was abandoned recently in one industrial setting due to laser equipment failure as discussed by Borg in, “Commercial Production of Thin-Film CdTe Photovoltaic Modules”, NREL/SR-520-23733, October. 1997. Known mechanical and abrasive blast scribing methods have only been shown on a small scale as typified by U.S. Pat. No. 5,501,744 to Albright and require innovation and improvement to be suitable for commodity level manufacturing.
Specific examples of prior art relating to CdS deposition and CdTe deposition performed by vacuum sublimation are described in detail below. The other prior art steps that are necessary to form a complete CdTe PV module are also discussed below.
One known vacuum method of producing CdTe solar cells by vacuum sublimation is taught in U.S. Pat. No. 5,536,333 to Foote et. al. This method is further described by Sasala et. al. in “Technology Support for Initiation of High-Throughput Processing of Thin-Film CdTe PV Modules”, NREL/SR-520-23542, pp. 1-12, (1997). These references discuss a technique known as vapor transport deposition (VTD), which involves heating of the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and processes for the massproduction of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and processes for the massproduction of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and processes for the massproduction of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2881408

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.