Refrigeration – Means producing shaped or modified congealed product – Freezing surface mounted for movement during freezing
Reexamination Certificate
2003-04-07
2004-07-06
Tapolcai, William E. (Department: 3744)
Refrigeration
Means producing shaped or modified congealed product
Freezing surface mounted for movement during freezing
C425S448000, C426S389000
Reexamination Certificate
active
06758056
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to preparation of frozen confectionery articles and more particularly to an apparatus for preparing the articles that delivers a confectionery substance to molds for molding into frozen articles, methods of making such articles, and molded frozen confectionery articles formed with minimal or no air pocket.
BACKGROUND OF THE INVENTION
Small frozen confectionery sticks are manufactured on an industrial scale by means of molding or by means of extrusion.
When extrusion is employed, a sausage shape of plastic consistency, which is relatively hard at a temperature of the order of −6° C. to −7° C., is extruded vertically at the exit from a freezer and then cut into sections. Extrusion gives the products a fine, less crystallized texture than that of molded products. The fine texture obtained by means of extrusion is largely due to the freezing conditions in a freezer and, in particular, to the freezing temperature at the exit from the freezer. That is to say, the lower the temperature, fewer large crystals are formed. This means that the faster the freezing, the smaller the ice crystals and the finer the texture. In a freezer, freezing speed is at its maximum thanks to mixing and to the continual scraping of the wall which allow accelerated freezing of the water. A drawback of this method is that the shape of the extruded products is limited.
The freezing of a liquid composition to be frozen by means of molding through simple thermal conduction in a mold immersed in a refrigerating solution is slower and leads to the formation of considerably larger crystals. In this process, the composition to be frozen is always metered out in the liquid state into molds with a view to guaranteeing satisfactory filling and to preventing the creation of air pockets, and its temperature is of the order of −2° C. to −3° C. The proportion of frozen water is low and most of the process of freezing the product takes place in the molds. This explains the presence of a coarser, more crystallized texture, owing to an increase in the size of the crystals.
U.S. Pat. No. 3,632,245, for example, describes an apparatus for multi-track manufacturing short frozen sticks by means of molding, in which rows of cells are simultaneously filled with a metered quantity of liquid composition to be frozen from distribution hoppers associated with volumetric metering devices comprising-cylinders constituting metering chambers in which the liquid is successively aspirated and then expelled by means of metering pistons. After this filling operation, the cells travel in a refrigerating liquid so that the articles are frozen. As the composition to be frozen is liquid, the mere drop in pressure created by the displacement of the piston in its chamber allows perfect filling of the cylinders. Thus, identical filling of the cylinders allows the simultaneous metering of an identical volume into the molds for all the tracks.
It is desired to have an apparatus that is more suitable for providing frozen molded confectionery products having the texture of an extruded product, and methods for making the same.
SUMMARY OF THE INVENTION
The invention relates to an apparatus for preparing frozen ice confectionery articles including: a freezer including a freezer pump that cools confectionery material so as to provide a frozen ice confectionery material and transports the frozen confectionery material through the apparatus, a rotative distributor that receives the frozen ice confectionery material from the freezer at a pressure greater than atmospheric pressure and distributes frozen material into each of a plurality of flexible pipes, and a slidable filler including a motor having a pre-programmable motion pattern to provide a desired pattern of deposition of the material into a plurality of molds while sliding the filler toward and away from the molds, a plurality of nozzle pipes operatively associated with the motor, wherein each nozzle pipe corresponds to each of the flexible pipes, and a time elapse rotative valve to facilitate control of the amount of frozen confectionery material arriving from the flexible pipes that is discharged to the nozzle pipes while maintaining the frozen ice confectionery material at a pressure greater than atmospheric pressure, wherein each mold receives frozen ice confection material from a corresponding nozzle pipe that discharges the same under a pressure greater than atmospheric pressure into the mold to provide a frozen confectionery article in a desired shape.
In a preferred embodiment, the freezer cools and the freezer pump conveys confectionery material to a temperature of to about −5° C. to −7° C. This advantageously provides suitably small ice crystals that remain in the frozen confectionery material as it is transported through the system and deposited in the molds. In another preferred embodiment, the rotative distributor is directly connected to the freezer via a pressurized pipe. In yet another preferred embodiment, the rotative distributor meters substantially the same amount of frozen confectionery material into each flexible pipe.
In one embodiment, the gauge pressure on the frozen confectionery material just after exiting the freezer is about 6 bar to 8 bar. The pressure can be maintained at this level throughout the system if desired. In a preferred embodiment, the gauge pressure on the frozen confectionery material at the rotative distributor is about 3 bar to 7 bar. In another preferred embodiment, the gauge pressure on the frozen confectionery material at the time elapse rotative valve is about 1.5 bar to 4 bar. Preferably, the pressure is about 1.5 up to 2 bar when the material is deposited into the molds.
In one embodiment, 5 to 20 nozzle pipes are included with an equivalent number of corresponding flexible pipes and molds. In another embodiment, the desired pattern of deposition in the molds is tri-dimensional. Preferred tri-dimensional patterns include a cylinder or tapered cylinder, a cone or tapered cone, or a substantially rectangular shape or tapered version.
In one embodiment, the slidable filler is adapted and configured to deposit sufficient frozen confectionery material to result in an average of less than about 8 volume percent voids remaining in the molds. Preferably, less than about 5 volume percent, and more preferably less than about 3 volume percent voids remain in the molds and the resultant products.
In one embodiment, the time elapse rotative valve turns or pivots in a casing and the nozzle pipes slide in such a manner that each descends into the mold at the start of filling, rises during filling, and re-emerges from the container at the end of filing. Preferably, the opening of the nozzle is sufficiently narrow to allow the ice cream to be fluidified by means of shearing.
The invention also relates to methods for preparing a molded ice confectionery article by preparing a frozen ice confectionery composition including at least about 50 weight percent water in a solidifying environment and applying a pressure thereto to facilitate transport of the composition, continuously feeding the frozen ice confectionery composition at a sufficient temperature and pressure to transport it from the solidifying environment into a rotative distributor, delivering the pressurized frozen ice confectionery composition from the rotative distributor in substantially equal amounts to a plurality of paths, providing an amount of frozen ice confectionery composition sufficient to fill a mold on each path using a slidabie nozzle, and discharging the sufficient amount of the frozen confectionery composition under a pressure greater than atmospheric pressure and under frozen conditions from the slidable nozzle into the mold to provide the molded ice confectionery article.
In one embodiment, the pressure is sufficient to transport the composition from the solidifying environment into each mold at a pressure of about 1.5 to 2 bar when the composition is discharged into each mold. In another embodiment, th
Cathenaut Philip Igor
Delande Bruno
Ali Mohammad M.
Nestec S.A.
Tapolcai William E.
Winston & Strawn LLP
LandOfFree
Apparatus and process for molding frozen ice confectionery... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus and process for molding frozen ice confectionery..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and process for molding frozen ice confectionery... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3217503