Apparatus and methods to achieve a variable color pixel...

Computer graphics processing and selective visual display system – Display driving control circuitry – Adjusting display pixel size or pixels per given area

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S100000, C345S469100

Reexamination Certificate

active

06831662

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the field of display screen technology. More specifically, embodiments of the present invention relate to flat panel display screens that are useful in conjunction with portable electronic devices.
2. Related Art
As the components required to build a computer system have reduced in size, new categories of computer systems have emerged. One of the new categories of computer systems is the “palmtop” computer system. A palmtop computer system is a computer that is small enough to be held in the hand of a user and can therefore be “palm-sized.” Most palmtop computer systems are used to implement various Personal Information Management (PIM) applications such as an address book, a daily organizer and electronic notepads, to name a few. Palmtop computers with PIM software have been know as Personal Digital Assistants (PDAs). Many PDAs have a small flat display screen associated therewith.
In addition to PDAs, small flat display screens have also been implemented within other portable electronic devices, such as cell phones, electronic pagers, remote control devices and other wireless portable devices.
Liquid crystal display (LCD) technology, as well as other flat panel display technologies, have been used to implement many of the small flat display screens used in portable electronic devices. These display screens contain a matrix of pixels, with each pixel containing subpixels for color displays. Some of the displays, e.g., color displays, use a back lighting element for projecting light through an LCD matrix. Other displays, e.g., black and white, use light reflectivity to create images through the LCD matrix and these displays do not need back lighting elements when used in lit surroundings. Whether color or in black and white, because the displays used in portable electronic devices are relatively small in area, every pixel is typically needed and used by the operating system in order to create displays and present information to the user. Additionally, because the display device is typically integrated together with the other elements of the portable electronic device, the operating systems of the portable electronic devices typically expect the display unit to have a standard pixel dimension, e.g., a standard array of (m×n) pixels is expected.
FIG. 1A
illustrates a typical black and white display screen having a standard size pixel matrix
20
with an exemplary edge-displayed character thereon. The edge-displayed character is the letter “A” and is displayed at the left hand side of the display screen at an arbitrary height. The technology could be either transmissive, transflective or reflective passive matrix display, e.g., liquid crystal display (LCD). In a conventional black and white display screen, the background pixels
26
can be light, e.g., not very dark, and the pixels
24
that make up the edge-displayed character can be dark. Importantly, in a positive mode display LCD, unless driven on, the pixels are white. Therefore, the edge location
28
of the display screen, e.g., between the edge of the matrix
20
and the bezel
22
of the portable electronic device, is typically white. As a result, the left edge of the edge-displayed character, “A,” has good contrast and is therefore easily viewed by the user. This is the case regardless of the particular edge used, e.g., left, right, top, bottom, because region
28
surrounds the matrix
20
.
FIG. 1B
illustrates a typical display screen having a pixel matrix
20
′ with the same edge-displayed character thereon but using negative mode display LCD technology. In negative mode display LCD, unless driven on, the pixels are black. The edge-displayed character is the letter “A” and is displayed at the left hand side of the display screen at an arbitrary height. In this format, the background pixels
26
can still be light and the pixels
24
that make up the edge-displayed character can still be dark. However, importantly, the edge location
28
of the display screen, e.g., between the edge of the matrix
20
′ and the bezel
22
of the portable electronic device, is typically dark in negative mode display LCD. Being dark, the edge region
28
is the same or similar color as the pixels
24
that make up the character. Therefore, the left edge of the edge-displayed character, “A,” has very poor contrast and is therefore typically lost as illustrated in FIG.
1
B. This makes reading the edge displayed character very difficult for a user. This is the case regardless of the particular edge used, e.g., left, right, top, bottom, because region
28
surrounds the matrix
20
′.
In an attempt to address this problem, some computer systems do not display edge-located characters to avoid the contrast problems associated with the screen edge. Many desktop computer systems, for example, simply try to avoid the display of edge-located characters on the cathode ray tube (CRT) screen or on a large flat panel display. However, this solution is not acceptable in the case of a small display screen where every pixel is needed for image and information presentation. What is needed is a display that makes maximal use of the available screen pixels while eliminating the problems associated with edge displayed characters in a display format where the pixels of the character are of the same or similar color as the edge region
28
. What is also needed is a solution that is also compatible with standard display screen dimensions, formats and driver circuitry. Further, what is needed is a solution that controls the color of border pixels, yet simplifies the design and lowers the cost of displays by reducing and/or eliminating the dependency of border pixel control on separate timing components.
SUMMARY OF THE INVENTION
Accordingly, embodiments of the present invention provide an electronic device, e.g., a cell phone, portable computer system, PDA, electronic pager, etc., having a screen that makes maximal use of the available screen pixels while eliminating the problems associated with edge displayed characters in display formats where the pixels of the character are of the same or similar color as the edge region. Embodiments of the present invention are particularly useful in negative mode passive matrix LCD displays that utilize a brighter background and a darker foreground. Embodiments provide the above benefits while being compatible with standard display screen dimensions, formats and driver circuitry. Embodiments of the present invention therefore provide a small display screen with improved viewability, especially at the edge locations. Further, embodiments provide a solution that controls the color of border pixels, yet simplifies the design and lowers the cost of displays by reducing and/or eliminating the dependency of border pixel control on separate timing components. The present invention provides these advantages and others not specifically mentioned above but described in the sections to follow.
A display device is described herein having a display matrix including a pixel border of width x and located around the edge locations of the matrix for improved viewability. In particular, the border region can be several pixels wide, e.g., 1<x<5. In one embodiment, the border region is two pixels wide and surrounds a display region in which images are generated from a frame buffer memory. In one implementation, both the border region and the display region are implemented using a negative display mode passive display matrix using supertwisted nematic liquid crystal display (LCD) technology. Other passive matrix techniques could also be used in addition to LCD technology, such as, electronic paper, electronic ink, or microelectromechanical machine systems (MEMS), etc.
In one embodiment, the pixels of the border region are controllable between an on state and an off state and have an adjustable threshold voltage level. The threshold voltage level can originate from a gray scale bias circuit which can be controlled by a contrast a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and methods to achieve a variable color pixel... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and methods to achieve a variable color pixel..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and methods to achieve a variable color pixel... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3290235

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.