Apparatus and methods for scanning documents including OMR,...

Registers – Coded record sensors – Particular sensor structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C235S454000, C235S470000

Reexamination Certificate

active

06357658

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to scanning devices. More particularly, the invention relates to a multifunctional scanner capable of automatically handling, scanning, and transmitting mark-sense, bar code, and image data from a document.
BACKGROUND OF THE INVENTION
Forms for recording handwritten marks for entry of data into a data processing system generally have a plurality of discrete areas arranged in a pattern delineated by background printing on the form. The user indicates a choice by placing a line, an “X” or other mark (e.g., entirely filling in the area) in one of a series of areas presented for choice. Each of the areas is typically defined by a box, oval, pair of spaced lines, etc., and the form normally has a field for a number of such choices. Forms of this type are used, for example, to encode a lottery player's choice of numbers for a wager, using a form reader in data communication with a lottery agent terminal and with a central lottery computer.
Upon validation of a player's entry the lottery agent terminal prints an entry ticket showing the player's entry and a serial number or other unique identification. The unique identification may include printed alphanumeric characters as well as bar code, optical character recognition (OCR) characters and/or darkened blocks in a geometric pattern representing numeric data. If the player presents a printed ticket as a winning ticket, the lottery agent enters data from the ticket into the terminal for verification by the lottery central computer over the data communication link. This data can be read automatically in the same manner as a handwritten entry form, using an appropriate scanner. “Instant win” lottery tickets are now in widespread use in many areas. These tickets consist of a game card that has a game play area printed thereon with a number of predetermined spots that are covered with thin, opaque latex coatings. The cards are sold over the counter in retail establishments and the purchaser selectively removes some of the coatings with a coin or other implement to reveal the underlying information. Depending on the game mechanics, the purchaser must match or “beat” other printed areas on the card to determine whether the card is a “winner.” If the card is a winner, it can be immediately cashed by presentation to an agent in an establishment that sells the cards to obtain a predetermined cash award.
In many prior art cases, validation of winners was performed manually, although there were significant accounting and ticket handling burdens for the selling agents and the system was prone to clerical errors. In addition, there were potential problems with illegal activities including cashing of altered tickets, theft of paid tickets from the selling establishments, and the cashing of stolen tickets.
Accordingly, computerized cashing apparatus was developed so that tickets could be validated by a central computer. In this scheme, each ticket selling establishment has a remote computer terminal connected to the central computer. In addition to the regular information described above a computer-readable code was printed on the lottery tickets, which code identified each ticket uniquely to the computer. Usually this code was in a bar-code form, and bar code scanners attached to the remote terminal were used to read the code. The information in the code was then forwarded to the central computer for validation.
The scanners used in these prior art systems typically scanned the tickets and forwarded the raw image data (e.g., mark sense or signature data), or bar code data to the host computer. The host computer would then process the image data or bar code data and present the information in a readable format to the user via the host terminal. This approach adds cost and complexity to the host computer and limits the ability to generically match host computers with the optical scanners.
Thus, there is a need in the art for an optical scanner that scans documents containing combinations of mark sense data, signature images, and bar code symbols, and converts the raw image data into a host datastream before forwarding the data to the host processor.
SUMMARY OF THE INVENTION
The present invention satisfies these and other needs in the art by providing a multifunctional scanner that includes a first processor, an image scanner, a laser scanner, and a host interface port. The host interface port electrically couples the first processor to an external host processor. The image scanner scans documents to detect the presence of images imprinted thereon, generates image data based on the detected images, and forwards the image data to the first processor.
The laser scanner scans documents to detect the presence of bar-code symbols imprinted thereon, decodes the bar code symbols, generates bar code information based on the decoded bar code symbols, and forwards the bar code information to the first processor. More particularly, the laser scanner radiates a laser beam into a laser scanning region, receives a reflected laser beam reflected off of a target located within the laser scanning region, analyzes the reflected laser beam to detect the presence of a bar code symbol located within the laser scanning region, decodes the detected bar code symbol into bar code information, and forwards the bar code information to the first processor.
The laser scanner is disposed within the interior region of a housing that has an exit window through which the laser scanner radiates the laser beam. The housing has a top section and a bottom section movably coupled to one another to permit access to the scanning region.
The first processor receives the image data from the image scanner, converts the image data into a host datastream, and forwards the host datastream to the external host processor via the host interface port. The first processor also receives the bar code information from the laser scanner, and forwards the bar code information to the host processor via the host interface port.
The scanner can be used to scan documents having form identifiers that identify the documents as being one of a plurality of form types. The scanner has a processor that stores a set of data masks, each of which corresponds to one of the form types. Each data mask identifies the location of at least one scanning field on the corresponding form type, and associates a data type with the scanning field. The image scanner scans the document to extract the form identifier, retrieves the stored data mask corresponding to the extracted form identifier, determines from the retrieved data mask the location of the scanning field(s) on the document, and scans the scanning field(s) to extract image data of the associated data type.
Where the data type associated with the scanning field includes mark sense data, the image scanner locates marked boxes within the scanning field, and stores in a document scanning memory, row and column indices representing the location of the marked boxes on the document. Where the data type associated with the scanning field includes signature image data, the image scanner locates the signature image within the scanning field, and stores a digital representation of the signature image in the document scanning memory. To reduce memory requirements and increase processing speed during scanning, the scanner combines multiple pixels into single bits before being stored in memory.
The data masks can include predetermined data pitch formats for each line of the corresponding form type. The image scanner sets, for each line of the document being scanned, a data pitch scanning format based on the predetermined data pitch formats included in the corresponding data mask. The data masks can also include a predefined sensitivity threshold for each scanning field. The image scanner adjusts, based on the predefined sensitivity threshold, a current sensitivity threshold for each scanning field on the document.
Where the document to be scanned has more than one dimension (e.g., it is a rectangular lottery form), the imag

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and methods for scanning documents including OMR,... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and methods for scanning documents including OMR,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and methods for scanning documents including OMR,... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2855935

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.