Apparatus and methods for performing otoscopic procedures

Surgery – Specula – Laryngoscope

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06390975

ABSTRACT:

TECHNICAL FIELD
The present invention is directed toward apparatus and methods for performing medical procedures. More particularly, the present invention is directed toward apparatus and methods for performing medical procedures in the external auditory canal and the middle ear space.
BACKGROUND OF THE INVENTION
The otoscope has long been the instrument of choice of medical practitioners for diagnosis of a variety of ear ailments. Used in conjunction with a standard ear speculum, the otoscope allows the user an illuminated, magnified view of the external auditory canal (a.k.a. the ear canal) and tympanic membrane (a.k.a. the eardrum).
Otoscopes are commonly used to diagnose middle ear infections, which are indicated by various physical findings associated with the buildup of trapped fluid behind the eardrum. Prior to the antibiotic era, medical practitioners commonly treated middle ear infections by incising or puncturing the eardrum with a handheld probe inserted through an otoscope head. This procedure, called myringotomy or tympanocentesis, was meant to promote healing and relieve discomfort by allowing the fluid trapped within the middle ear to drain into the external auditory canal. An unobstructed view of the probe and the eardrum is very important during this procedure in allowing the practitioner to make the incision at the proper location on the eardrum. For similar reasons, fine control of the movement of the probe is also very important. Likewise, maintaining the patient's head in a fixed position is also important to performing this procedure.
This traditional method was associated with a number of disadvantages. First, the practitioner's view was often hindered by the removal of the magnifying lens to admit an instrument through the otoscope head. Second, the presence of the instrument within the otoscope head often obstructed the practitioner's view through the otoscope into the ear canal. Third, no mechanical control feature was available to guide the handheld probe into the middle ear space, or to limit its insertion distance. Finally, the practitioner was unable to directly monitor or control movement of the patient's head, as one hand was required to manipulate the otoscope and the other to manipulate the probe.
During the latter half of the 20
th
century, as antibiotics gained acceptance, tympanocentesis fell into disfavor as a treatment option for middle ear infections.
Modern medical practitioners are now faced with evidence of increasing emergence of antibiotic resistant bacteria. Treatment guidelines for bacterial infections consequently are being carefully reviewed and revised in a global effort to stem the advancement of antibiotic resistance. Middle ear infections, which currently account for approximately 25% of all oral antibiotic prescriptions in the U.S., are a prime target in this effort.
It is known that middle ear infections, which are accompanied by fluid trapped in the middle ear space, can have either a viral or bacterial etiology. Furthermore, some cases wherein fluid is trapped in the middle ear are not accompanied by an infection at all. Rather, the trapped fluid is sterile. Antibiotics will have no effect on viral ear infections, or on ear ailments where no infection exists.
Once bacterial etiology has been established, optimum medical treatment for an infection requires positive identification of the causative organism and its specific antibiotic susceptibilities. In middle ear infections, etiological and bacterial identification is typically made by obtaining a sample of middle ear fluid for culture analysis. In spite of the inherent complicated nature of the procedure, tympanocentesis is gaining recognition as a necessary supplement to the use of antibiotics.
SUMMARY OF THE INVENTION
The present invention relates to apparatus that can be used in combination with an otoscope for performing procedures in the external auditory canal and the middle ear space, and to methods of making such apparatus. In one embodiment, a speculum having a tapered sidewall is configured at its proximal end for engagement with the otoscope, and at its distal for insertion into the ear canal. The exterior surface of the sidewall has a groove extending from the proximal end of the sidewall toward the distal end of the sidewall. The sidewall also has an opening, located distally of the groove and aligned with the groove. The groove is sized and shaped to allow a practitioner to place a probe against the proximal end of the sidewall and slide the probe along the groove, through the opening in the sidewall, and into the ear canal. Using the apparatus, the practitioner can view the ear canal and eardrum through the speculum while inserting the probe along the exterior wall of the speculum. The practitioner accordingly can puncture the eardrum using the probe without the probe obscuring the practitioner's view of the procedure.
In another embodiment of the invention, the speculum also incorporates one or more slots adjacent the groove that are sized and shaped to receive complementary tabs on an actuator. The actuator carrying a needle or probe can be placed against the sidewall of the speculum with the needle urged against the groove, then snapped into place in the slots. The needle accordingly does not need to be threaded into the system. The actuator can assist the practitioner in controllably inserting the probe or needle into the ear canal and performing the procedure.
In still another embodiment of the present invention, the actuator incorporates an insertion-distance regulator and a biasing means. The distance regulator prevents the actuator from projecting the probe more than a maximum distance beyond the distal end of the speculum. The biasing means retracts the needle upon release of pressure on the actuator, and returns the needle to a location internal to the speculum.
In yet another embodiment of the present invention, the actuator is oriented with respect to the speculum to position the practitioner's one hand directly over the side of the patient's head to facilitate the practitioner in monitoring and controlling movement of the patient's head. This and other embodiments can incorporate a hollow probe or needle coupled to a bulb for generating a suction. The bulb can be attached to the needle by a flexible tube allowing the bulb to be held with the practitioner's other hand, which also holds the base of the otoscope, and which also can assist in monitoring and controlling the patient's head. Consequently, the practitioner can perform the entire procedure and draw a sample of fluid from the middle ear, while holding the patient's head still, without the assistance of any additional individuals or mechanical equipment.
In yet another embodiment of the present invention, the speculum is adapted for use in combination with both currently common types of otoscope heads. The proximal end of the speculum has a generally cylindrical projection sized and shaped to engage a mouth on a first type of otoscope head. The internal surface of the speculum has a number of ribs contoured to conform with the distal end of a second, or diagnostic type, otoscope head. A tab or prong projecting from the internal surface of the speculum engages a locking groove on the second type of otoscope head. As a result, the same speculum can be used by the practitioner regardless of the type of otoscope being used.


REFERENCES:
patent: 672317 (1901-04-01), Dow
patent: 1775140 (1930-09-01), Platou
patent: 3020912 (1962-02-01), Chester
patent: 3596653 (1971-08-01), Hotchkiss
patent: 3848587 (1974-11-01), McDonald
patent: 3949740 (1976-04-01), Twentier
patent: 4335713 (1982-06-01), Komiya
patent: 4380998 (1983-04-01), Kieffer, III et al.
patent: 4641663 (1987-02-01), Juhn
patent: 4785796 (1988-11-01), Mattson
patent: 4913132 (1990-04-01), Gabriel
patent: 5363839 (1994-11-01), Lankford
patent: 5390663 (1995-02-01), Schaefer
patent: 5392764 (1995-02-01), Swanson et al.
patent: 5709677 (1998-01-01), Slatkline
patent: 5711309 (1998

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and methods for performing otoscopic procedures does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and methods for performing otoscopic procedures, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and methods for performing otoscopic procedures will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2900212

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.