Data processing: generic control systems or specific application – Specific application – apparatus or process – Product assembly or manufacturing
Reexamination Certificate
1998-08-19
2001-06-05
Sheikh, Ayaz (Department: 2155)
Data processing: generic control systems or specific application
Specific application, apparatus or process
Product assembly or manufacturing
C700S165000, C700S104000, C072S702000, C072S009400, C072S010001, C706S919000
Reexamination Certificate
active
06243611
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to the field of manufacturing, and to the production of bent sheet metal components. More particularly, the present invention relates to an apparatus and method for integrating an intelligent manufacturing system, which manages and distributes design and manufacturing information throughout a production facility, with an expert planning system that generates a bending plan and control information for the production of sheet metal components.
2. Background Information
Traditionally, the production of bent sheet metal components involves a series of production and manufacturing stages. The first stage is a design stage during which a sheet metal part design is developed based on a customer's specifications. A customer will typically place an order for a particular sheet metal component to be produced at the facility. The customer's order will usually include the necessary product and design information so that the component may be manufactured at the facility. This information may include, for example, the geometric dimensions of the part, the material required for the part, special forming information, the batch size, the delivery date, etc.
During the design stage, a sheet metal part design may be developed by a design office at the manufacturing facility using an appropriate computer-aided design (CAD) system. Based on a customer's specifications, a two-dimensional (2-D) model of the sheet metal part may be developed by a programmer with a CAD system. Typically, a customer will provide a blueprint or drawings of the component and the critical geometric dimensions of the part. The drawings may also indicate any special forming or marking to be included in the part, as well as the location of holes or other types of openings on the surface(s) of the sheet metal part. The design programmer will often use this blueprint or drawing to develop a 2-D model on the CAD system. The 2-D model may include a flat view and one or more other perspective views of the sheet metal part, with bending line and/or dimensional information.
Before actual bending of the sheet metal component can take place, the part must first be punched and/or cut from initial sheet metal stock material. Computer numerical control (CNC) or numerical control (NC) systems are typically used to control and operate punch presses and/or plasma or laser cutting machinery to process the stock material. In order to facilitate processing of the stock material, a computer-aided manufacturing (CAM) system or CAD/CAM system can be used by a design programmer to generate control code based on the 2-D model. The control code may comprise a part program that is imported to and utilized by the punch press and/or cutting machinery to punch or cut the sheet metal component from the stock material.
The next stage in the production process is a bending plan stage. During this stage, a bending plan is developed by a bending operator at the shop floor. The operator will normally be provided with the blueprint or 2-D drawing of the component, along with one or more samples of the cut or punched stock material. With these materials, the bending operator will develop a bending plan which defines the tooling to be used and the sequence of bends to be performed. The bending workstation may include CNC metal bending machinery, such as a CNC press brake, that enables the operator to enter data and develop a bending code or program based on the bending plan.
Once the bending plan is developed, the operator will set up the workstation for initial testing of the bending sequence. During this testing stage, the punched or cut stock material will be manually loaded into the press brake and the press brake will be operated to execute the programmed sequence of bands on the workpiece. The operator will analyze the final bend sheet metal part and inspect it for conformance with the customer's specifications. Based on the results of the initial runs of the press brake, the operator may modify the bending sequence by editing the bending program. Further testing will typically be conducted until the bent sheet metal component is within the required design specifications.
One of the final stages in the production process is the bending stage. After the bending plan has been developed and tested, the bending operator will set up the required tooling at the bending station and operate the press brake based on the bending plan and the stored bending program or code. Job scheduling is also performed in order to ensure that the necessary amount of punched or cut stock material will be available on time at the bending station, and so that other jobs will be completed by the requested delivery dates. After the final bent sheet metal parts have been produced, the parts may then be assembled and packaged for shipping to the customer.
The conventional production and manufacturing process described above suffers from several drawbacks and disadvantages. For example, although the design and manufacturing data for each customer's order is normally archived physically (e.g., by paper in a file cabinet) or electronically (e.g., by storing on a disk or magnetic tape), such data are normally stored separately and not easily retrievable. Further, such data is often lost or damaged and valuable time is often lost in attempting to distribute the design and manufacturing information to the shop floor and to the other locations throughout the production facility. Considerable manufacturing time is also lost during the development of the sheet metal part design and bending plan, since the development of the part design and bending plan is primarily performed by the design programmer and the bending operator, and relies heavily on the individual's knowledge, skill and experience.
In recent years, there have been developments and attempts to improve the conventional sheet metal manufacturing process and to improve the efficiency of the overall process. For example, the use and development of 2-D and three-dimensional (3-D) modeling in commercially available CAD/CAM systems has facilitated and improved the production process and the modeling of bent sheet metal components. The 2-D and 3-D representations of the part may now be utilized by the design programmer and operator to better understand the geometry of the part and to more efficiently develop a part design and bending code sequence. The ability to store and transfer data electronically has also improved the flow of information from the design office to locations on the shop floor. With the advancement of computers and data communication networks, it is no longer necessary to search through a cabinet or file of old paper tapes or magnetic disks.
Other recent developments have also improved the efficiency of the design and manufacturing process, and have provided a greater level of automation in the production process of sheet metal components. For example, robotic manipulators and controllers have been developed for handling and positioning sheet metal workpieces within a press brake to perform bending operations. Further, material handlers have been provided for loading and positioning workpieces at a location for a robot to grasp and for unloading finished workpieces. Repositioning grippers have also been introduced for holding a workpiece within a press brake while a robot changes or repositions its grasp of the workpiece.
For example, a conventional bending workstation
110
for bending a sheet metal part (workpiece)
116
under the control of a manually created program downloaded to various control devices is illustrated in FIG.
1
. The exemplary bending workstation
110
of
FIG. 1
may comprise a BM100 Amada workstation, available from Amada America, Inc. (previously operating under the corporate name of U.S. Amada Ltd.), Buena Park, Calif. As shown in
FIG. 1
, the bending workstation
110
includes: a press brake
129
for bending workpiece
116
; a five degree-of-freedom (5 DOF) robotic mani
Hazama Kensuke
Huang Liang-Yu
Amada America, Inc.
Backer Firmin
Greenblum & Bernstein P.L.C.
Sheikh Ayaz
LandOfFree
Apparatus and methods for integrating intelligent... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus and methods for integrating intelligent..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and methods for integrating intelligent... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2451589