Apparatus and methods for forming internally and externally...

Metal working – Method of mechanical manufacture – Heat exchanger or boiler making

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C029S890100, C029S890049

Reexamination Certificate

active

06760972

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to extended surface area tubing. The present invention also generally relates to a machine that produces textured surfaces on both inner and outer surfaces of a tube. The textured surfaces may be patterns of ribs and grooves formed in the inner and outer surfaces of the tube.
2. Description of the Related Art
A heat exchanger tube may be used in a process that transfers heat between a first fluid inside the heat exchanger tube and a second fluid outside of the heat exchanger tube. The efficiency of heat transfer between the first fluid and the second fluid may be a complicated function that depends on the characteristics of the fluids, on the characteristics of the heat exchanger tube, and on the characteristics of fluid movement relative to the heat exchanger tube. The term “fluid” refers to a liquid, a gas, or a combination of a liquid and a gas. A heat exchanger tube may also be used to transfer heat between a fluid and a solid. The solid may be located inside or outside of the tube.
Each end of a tube may be pointed. A pointed tube may have reduced diameter cylindrical portions at each end of the tube that transition to a larger diameter main body section of the tube. A pointed tube may facilitate attachment of the tube to support structures. The support structures may be tube sheets of a heat exchanger. Tube sheets may support several tubes within a shell of a tube-and-shell heat exchanger. Fluid that is directed past outside surfaces of tubes of a tube-and-shell heat exchanger may flow in a direction that is substantially coaxial to a longitudinal axis of the shell of the heat exchanger. Tubes having pointed ends may be easier to position and seal to support structures than are tubes that do not have pointed ends. U.S. Pat. No. 5,311,661, which issued to Zifferer and which is incorporated by reference as if fully set forth herein, describes an apparatus that may be used to form heat exchanger tubes having pointed ends.
It is desirable to maximize the heat transfer rate across a wall of a tube of a heat exchanger. Increasing the surface area of a tube may increase the heat transfer rate across the tube. Also, directing fluid flow past and through a tube in desired fluid flow patterns may increase the heat transfer rate across the tube.
One method of increasing the surface area of a tube is to attach fins to an outer surface of the tube. Fins may be attached to a tube after the tube is formed, or fins may be formed in the outer surface of the tube. Fins may be formed on the outer surface of a tube by a finning tool of a finning machine. A finning tool typically includes three or four disks mounted on an arbor. The disks form a spiraled flight of fins on an outer surface of a tube during use. The fins formed by a finning tool may have heights that are greater than about 30 mils (0.030 inches). Generally, the fins formed by a finning tool are oriented substantially perpendicular to the longitudinal axis of the tube. A small amount of skew from a true perpendicular orientation allows the finning tool to provide a driving force to the tube that moves the tube through the finning machine.
Fins may be oriented substantially perpendicular to a longitudinal axis of the tube, or the fins may be oriented substantially parallel to the longitudinal axis of the tube. Fins on an outer surface of a tube that are substantially perpendicular to a longitudinal axis of the tube may be used in heat transfer applications where fluid flow is directed substantially perpendicular to the longitudinal axis of the tube. Heat exchanger tubes of condensers and evaporators may be finned tubes wherein the fins are oriented substantially perpendicular to longitudinal axes of the tubes. Fins that are oriented substantially parallel to a longitudinal axis of a tube may be used in heat transfer applications where fluid flow is directed substantially coaxial to the longitudinal axis of the tube. Tubes having fins that are oriented substantially parallel to longitudinal axes of the tubes may be used in tube and shell heat exchangers.
Another method of increasing the surface area of a heat exchanger tube is to texture the inner surface of the tube. A knurling tool may be used to form a groove and rib pattern on an inner surface of a tube. The knurling tool may be placed within the tube. Force may be applied to an outer surface of the tube to press the inner surface of the tube against the knurling tool. Pressing the inner surface of the tube against the knurling tool forms a knurl pattern on the inner surface of the tube.
A finning tool and a knurling tool may be used in combination to form a tube that has a finned outer surface and a knurled inner surface. U.S. Pat. No. 4,886,830, which issued to Zohler and which is incorporated by reference as if fully set forth herein, describes a method of forming a tube that has a finned outer surface and a knurled inner surface.
An alternate method of texturing a tube is to form a desired pattern of ribs and grooves on surfaces of a flat metal plate. The plate may then be rolled into a cylindrical shape. A weld may be formed to join the ends of the plate together and form a tube. U.S. Pat. No. 5,388,329, which issued to Randlett et al., describes a method of manufacturing an extended surface heat exchanger tube using a rolled and welded metal plate.
A heat transfer rate across a tube may be increased by directing fluid flow in a desired flow pattern through and by the tube. A desired flow pattern may increase internal mixing of the fluid. A desired flow pattern may promote non-laminar fluid flow of one or both of the heat exchange fluids. In a straight, smooth-walled cylindrical tube, fluid may flow past or through the tube in a laminar flow pattern. Laminar fluid flow may develop a boundary layer at a wall of the heat exchanger tube. The boundary layer may inhibit heat transfer throughout the fluid. Non-laminar fluid flow may minimize the formation of a boundary layer and promote internal mixing of the fluid so that heat transfer takes place throughout the fluid.
One method that may be used to obtain a desired fluid flow pattern is to change the geometrical configuration of the surfaces of a heat exchanger tube. The geometrical configuration of the surfaces of a heat exchanger tube may be changed by texturing the surfaces of the tube. Texturing the surfaces of the tube may increase the heat transfer surface area of the tube and promote internal mixing of fluid that flows through or by the tube.
SUMMARY OF THE INVENTION
Inner and outer surfaces of a tube may be simultaneously textured with a texturing machine. The texturing machine may include an outer knurling device and an inner knurling device. The knurling devices may be used to form grooves in inner and outer surfaces of a tube. The depth of the grooves may be less than about 35 mils (0.035 inches), and are preferably less than about 25 mils. The depth of the grooves may be greater than about 4 mils. The grooves formed in the outer surface of the tube may have a different depth and a different pattern than the grooves formed in the inner surface of the tube. The grooves formed in the surfaces of the tube may increase the surface area of the tube, promote internal mixing of fluid that flows by or through the tube, and inhibit formation of stagnant areas of fluid adjacent to inner and outer surfaces of the tube. The grooves may be formed in a helical pattern about a longitudinal axis of the tube. The angles of the helical patterns formed in the inner and outer surfaces of the tube may be less than about 45° relative to the longitudinal axis of the tube. Angle patterns that are less than about 45° relative to the longitudinal axis of the tube may allow the tube to be used as a heat exchanger element wherein fluid flows by and through the tube in directions that are substantially coaxial with the longitudinal axis of the tube.
Texturing in an outer surface of a tube may be formed in a helical pattern by a texturing machine. An

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and methods for forming internally and externally... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and methods for forming internally and externally..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and methods for forming internally and externally... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3233400

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.