Exercise devices – Involving user translation or physical simulation thereof – Having separate foot engaging members reciprocating on...
Reexamination Certificate
2000-11-30
2003-02-04
Donnelly, Jerome W. (Department: 3764)
Exercise devices
Involving user translation or physical simulation thereof
Having separate foot engaging members reciprocating on...
C482S051000, C482S071000
Reexamination Certificate
active
06514180
ABSTRACT:
TECHNICAL FIELD
The present invention relates to apparatus and methods for exercising using a skating motion.
BACKGROUND OF THE INVENTION
Skating, particularly in-line skating has become a very popular activity for sport and exercise. With other popular exercise activities, stationary exercise devices have been developed that have become as popular as the activity itself. These devices are popular and needed because they allow enthusiasts of a sport to maintain conditioning in their sport when the outdoor practice of the activity may be impractical or unsafe.
Many people prefer to exercise indoors as their primary form of physical conditioning. Persons who rely on stationary exercise to maintain their fitness level will benefit from increased interest in exercise and greater exercise enjoyment. Typically, a stationary simulation device should be designed to closely replicate the popular activity, be adjustable to the user's fitness level, be enjoyable and easy to use, and be able to accommodate a wide range of body types and sizes.
There are a number of prior art devices that attempt with varying degrees of success to meet these goals. The original skate simulator, the slideboard, is fairly well known. One example of this type of device is U.S. Pat. No. RE 34,320 to Keppler. These products have achieved significant success among skating enthusiasts. Slideboards require that a user's body travel from one edge of the device to the other during use. Slideboards are limited in their versatility, however, because they are large, require significant skating technique on the part of the user and they do not allow the user to make adjustments to the exercise (e.g. resistance, speed, distance). There is a skate technique and user style and fitness level that works quite well with the slideboard, but there are many others that do not.
U.S. Pat. No. 4,340,214 to Schutzer discloses a mechanism that is similar to skating, but attempts to resolve some of the problems associated with slideboards. The Schutzer device provides a lateral, slightly inclined track that allows an alternating leg motion similar to the slideboard. The device differs from the slideboard in that it permits the bottom of the foot to remain normal to the leg, as it does in skating. It also differs in that the body does not travel from side to side. Rather, the Schutzer device provides stays in the center which keep the user's body from moving laterally, thereby isolating the movement to the legs. The device requires less skill than the slideboard but it is still quite large and requires the user to resist the force of the exercise with the shoulder (against the stays). This is quite unnatural.
U.S. Pat. No. 4,915,373 to Walker discloses an exercise device having a bicycle-type saddle in the center, on which the user is seated while leaning against a chest pad. The user's feet are engaged with left and right tracks on either side of the saddle. The tracks are shaped to approximate a skating motion. The tracks include a power or push part and a return portion. The foot does not travel away (push) from the body along the same path that it follows while returning. The constraints on the user's upper body by the seat and chest pad are uncharacteristic of the natural skating motion and detract from the simulation, and thus, the user's enjoyment of the exercise.
U.S. Pat. Nos. 5,284,460 and 5,718,658 to Miller et. al. also disclose stationary mechanical skate simulators. The Miller devices generally allow the user to move with a motion similar to skating, however, these devices are difficult to use, largely because they require significant coordination and balance. Another problem with the Miller devices is that the muscular involvement while exercising on such devices do not closely replicate the muscle involvement experienced during actual skating, as is desired.
U.S. Pat. No. 4,781,372 to McCormack and U.S. Pat. No. 4,811,941 to Elo disclose strengthening tools for skaters having a weight stack coupled to a pair of pedals by a cable-and-pully system. The pedals slide on tracks which pivot on a frame. As the user's foot travels along the track a weight is lifted. The tracks pivot so that the muscles involved in the skating push may be strengthened. As the foot returns along the track, the weight is lowered. The combined left/right motion of these devices, however, does not replicate the natural skating motion, and there is little if any similarity between the resistance experienced on these devices and the resistance experienced while skating.
In summary, existing exercise devices that attempt to simulate a skating motion suffer from undesirable characteristics that detract from the user's enjoyment and from the utility of the devices. While some existing devices replicate the skate motion better than others, those that more closely simulate skating are difficult to learn and use, or introduce other problems. Those that do not closely simulate the skating motion fail as skaters. Thus, in spite of the fact that there are many skating devices in the prior art, there is still a need for a stationary skating apparatus that will provide a simple, easy to learn and use, close simulation of the skating motion and thereby gain popular acceptance.
SUMMARY OF THE INVENTION
The present invention is directed to apparatus and methods for exercising using a skating motion. In one aspect, an exercise apparatus in accordance with the invention includes a frame having left and right pedal guides, and left and right pedals moveably coupled to the left and right pedal guides, respectively. Each of the left and right pedals rotates about an axis of rotation projecting from an upper surface thereof. The apparatus further includes a pedal control device coupled to the left and right pedals and constraining the movement of the left and right pedals such that as one of the left or right pedals is moved in a first direction along the left or right pedal guide, the other of the left or right pedals is moved in a second direction along the other of the left or right pedal guides. The pedal control device also constrains a rotational movement of the left and right pedals such that as the one of the left or right pedals is moved in the first direction, both the left and right pedals are simultaneously rotated in a first rotational direction about the axes of rotation, and as the other of the left or right pedals is moved in the first direction, both of the left and right pedals are simultaneously rotated in a second rotational direction about the axes of rotation. The exercise apparatus thereby provides an improved simulation of the natural movements associated with skating, thereby improving the quality of the exercise and increasing the user's satisfaction and enjoyment of the exercise apparatus.
In an alternate aspect, the pedal control device includes a resistance device that resists the movement of the left and right pedals in at least one of the first and second directions. Alternately, the resistance device may include an electromagnetic brake, and may be coupled to a controller to allow the resistance of the device to be adjusted.
In yet another aspect, an exercise apparatus includes an elongated track member, a pedal moveably coupled to the track member, the pedal being rotatable about an axis of rotation, and a pedal control assembly coupled to the pedal. The pedal control assembly may control the movement of the pedal such that as the pedal is moved in a first direction along the track member, the pedal is rotated in a first rotational direction about the axis of rotation, and as the pedal is moved in a second direction along the track member, the pedal is rotated in a second rotational direction about the axis of rotation. The pedal control assembly may include a belt coupled to a rotation shaft attached to the pedal, the belt at least partially wrapping or unwrapping from around the shaft as the pedal moves in either the first or second directions. Alternately, the pedal control assembly may inc
Donnelly Jerome W.
Dorsey & Whitney LLP
LandOfFree
Apparatus and methods for exercising using a skating motion does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus and methods for exercising using a skating motion, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and methods for exercising using a skating motion will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3138976