Apparatus and methods for evaluating performance of...

Optics: measuring and testing – Photometers – Integrating spheres

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C356S241100, C250S228000

Reexamination Certificate

active

06734958

ABSTRACT:

BACKGROUND OF THE INVENTION
Endoscopes are optical instruments that permit a user to see around or through an obstruction, to see something that would otherwise be concealed. For example, endoscopes are used to permit doctors to see inside a patient's body without major surgery; some endoscopes require a small access incision to be made in the patients body. Endoscopy systems typically comprise an illumination light source, illumination light guides to conduct the illuminating light to the tissue under observation, imaging optics, and image collection light guides to conduct the image of the tissue to the observer. The image can be detected by the human eye or by an imaging device such as a CCD camera. An imaging device usually employs an image display system such as a CRT monitor to relay the image to the human eye. In some cases, the image detected by the imaging device or camera may be digitized, stored in memory or on media, processed with various software algorithms, and/or then converted to an analog video signal that can be displayed on the image monitor.
Physicians and surgeons use endoscopy devices to examine tissue and decide on treatment. Having a sound basis to compare normal and abnormal tissues is essential. If changes occur in the way the system presents the visual information, the physician's or surgeon's ability to interpret results is compromised. To assist accurate diagnosis and treatment, hospitals and clinics must have ways to measure and quantify the performance characteristics of endoscopy devices and of the systems comprising such devices.
Components of endoscopes, and endoscopy systems, can become degraded, or can be incorrectly adjusted, or can fail to operate or otherwise fail to perform. It can be difficult to determine if an endoscope is not performing adequately, particularly where the problem comprises inaccurate color representation. Problems arise from a variety of sources, including difficulties with intensity or spectral characteristics of the illumination lamp or light transmission elements, and bad image sensors, software programs or display systems. Other systems can also fail, such as air, water and suction lines.
Endoscopes typically have problems in one of three areas. First is image quality, which can be defined as the accuracy with which the image viewed by the operator represents the target under observation. In other words, does a straight line stay a straight line when viewed through the endoscope? Second is the photometric quality of an image, which can be defined as the spectral distribution of the light emitted from the target. Third, is the physical integrity of the equipment, particularly the endoscope itself, which can sustain optical damage, leaks or blockages in air and fluid lines and damage to the mechanical control components or envelope.
A variety of approaches have been pursued to remedy these problems. See, e.g., U.S. Pat. Nos. 5,820,547; 5,841,525; “The Endo Tester™—A Lab VIEW-Based Automated Test System for Fiber-Optic Endoscopes” by Eric Rosow, Hartford Hospital, and Joseph Adam, Premise Development Corporation (brochure); PCT WO 97/07627 (EP0845187 A 19980603); U.S. Pat. Nos. 5,369,481; 5,738,824; WO 98/58682); U.S. Pat. No. 5,494,530.
However, there has gone unmet a need for improved apparatus and methods for assessing the color, image or structural characteristics of an endoscope. The present invention provides these and other advantages.
SUMMARY OF THE INVENTION
The present invention provides computer controlled measurement devices, with associated mechanical adapters for connection to various components of endoscopy systems, that measure performance characteristics of an endoscope such as the color, image and structural characteristics. The present invention also provides computer-implemented programming, such as software, for calibrating the measurement devices, collecting and controlling measurements, analyzing measurements or comparing them to established performance criteria. In addition, the systems, devices and methods of the present invention can track previous measurements for a particular endoscope and provide analysis and reports, etc., to identify or describe performance trends and allow a user to plan for replacement or servicing.
In one aspect, the present invention provides a test system able to assess photometric performance characteristics of an endoscope comprising: a photometric measurement module comprising a measurement integrating sphere and at least one adapter able to optically connect the integrating sphere to a plurality of different optical ports of different endoscopes. The photometric measurement module measures data from at least one photometric characteristics selected from the group consisting of absolute optical intensity, relative optical intensity, optical power, optical energy, illuminance, radiance, irradiance, display color, perceived color and transmittance, and a controller containing computer-implemented programming that controls at least one of the calibration, measurement and analysis of the photometric performance characteristics of an endoscope using the data from the module.
In this and other aspects of the invention (unless expressly stated otherwise or clear from the context, all embodiments of the present invention can be mixed and matched), the data are measured over a plurality of discrete wavelengths or wavelength regions, and the system can further comprise an image quality measurement module comprising at least one adapter able to optically connect the module to a plurality of different endoscopes, wherein the module measures data from at least one image quality performance characteristic selected from the group consisting of image size, spatial distortion, contrast, brightness, image resolution, focus and modulation transfer function, and the controller contains computer-implemented programming that controls at least one of the calibration, measurement and analysis of the image quality performance characteristics of an endoscope using the data from the module.
The system can also comprise a structural element measurement module comprising at least one adapter able to operably connect the module to a plurality of different endoscopes, wherein the module measures data of structural element performance characteristic selected from at least one of a mechanical, a pneumatic and a fluidic system of an endoscope, and the controller contains computer-implemented programming that controls at least one of the calibration, measurement and analysis of the structural element performance characteristics using the data from the module.
In some embodiments, the controller controls data acquisition by the photometric measurement module, the image quality measurement module and the structural element measurement module. The controller may track performance trends over time of at least one of the characteristics, respond to a set of operator input instructions to control the data acquisition and analyses of the measurement modules, and calibrate a response of the modules. Calibration can comprise using a reference standard to provide calibration correction factors, and application of the calibration correction factors to the data collected by the photometric measurement module, the image quality measurement module or the structural element measurement module provide a corrected data set. The computer-implemented programming may also provide for acquisition and storage of a background signal data set; acquisition and storage of a measurement signal data set representing raw data obtained from the sample device; and, subtraction of the background signal data set from the measurement signal data set to generate a background corrected measurement data set.
If desired, the programming can apply the calibration correction factors to the background corrected measurement data set to generate a calibrated measurement data set. It may also analyze the background corrected measurement data set to determine if the background corrected measurement data set is of acce

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and methods for evaluating performance of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and methods for evaluating performance of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and methods for evaluating performance of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3215447

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.