Apparatus and methods for enhancing the functional longevity...

Surgery – Instruments – Surgical mesh – connector – clip – clamp or band

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S148000

Reexamination Certificate

active

06582443

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention is generally directed to apparatus and methods for increasing the functional longevity and useful life of implantable medical devices while facilitating, shortening, and simplifying their implantation protocols. More particularly, the present invention is directed to apparatus and to associated methods for reducing mechanical stresses exerted on such medical devices by sutures and other surgical attachment mechanisms, both during and after implantation of the devices. Further, the present invention provides the implanting surgeon with easy to identify and use surgical attachment points which facilitate the implantation procedure relative to conventional devices and methods.
The surgical implantation of medical devices has long been known in the art. Presently, a number of surgical procedures utilize various implantable medical support devices and structures to stabilize organs and other anatomical structures at or near their original natural positions. As a result, these implanted medical devices and the associated surgical implantation procedures used to position them not only prevent or reduce anatomical deterioration of the supported organs and anatomical structures, but provide the added potential benefits of improving the function and, possibly, the functional life of the supported body part.
Such implantable medical support devices have been developed in a wide variety of structural and design configurations, depending upon intended need at the implantation site. For example, simple mesh slings or sheets of material have been used to reinforce abdominal walls following the protrusion of portions of the intestine. These mesh sheets have been formed of a variety of materials ranging from simple, biologically tolerable synthetic cloths to metals that are sutured into position. Alternatively, more exotic structures have been sutured between bones, for example, of the pelvis, to form supporting slings for abdominal organs and structures.
A specific example of one such commonly used medical implant is the urethral sling utilized for treating cases of recurrent urinary incontinence in females. Female recurrent urinary incontinence commonly develops from the loss or weakening of pelvic support of the urethra and/or bladder. Surgical corrective procedures have been developed for this condition which generally utilize a sling to add to the pelvic support of the abdominal organs, including the bladder or bladder neck in their natural positions.
Even though it is possible that the use of subsequent therapeutic protocols in combination with the patient's natural healing process and the added support provided by the implanted sling may improve the naturally existing muscle support of the patient's abdomen, medical implants such as these are intended to remain in stable condition in situ for extended periods of time, measured in years and even in decades. Therefore, it is important that slings and other implantable medical devices be designed with long term, stable functionality in mind.
One way to achieve this stability is to form the sling itself from biologically compatible materials in designs that will be compatible with normal physiological healing processes and that will retain their functional characteristics throughout years of use. Additionally, stable placement of the medical support devices during the implantation procedures also impacts this long-term functionality. For example, a urethral sling may be positioned across the appropriate portion of the abdominal floor to support the bladder or bladder neck by suturing opposing ends of the sling into position suspended from the pelvic structures, e.g., pelvic ischia, the lower most bones depending from each side of the pelvis. This positioning provides added stability beyond that available by simply suturing the sling to tissue structures and connective tissue.
Overall, medical implantation support techniques such as the above have enjoyed widespread success. However, there is always room for improvement. Under the present circumstances, it is known in the art that implanted medical devices such as these undergo physical changes over time as a result of the body's natural healing and immune processes as well as the mechanical stresses imparted into and absorbed by the implants through repeated movement and use. Fabric weaves can shift and fibers can stretch, both contributing to decreases in the amount of support provided by the implant. Similarly, suturing holes in the implant materials may distort and stretch over time under the constant, concentrated forces focused into the sling materials by the direct contact of the fastening sutures cutting into the implants. This stretching and weakening may ultimately result in the inability of the implants to effectively perform their intended tasks, including that of support.
It is worth noting that fastening the implants into position with sutures remains as a very poplar technology. Though somewhat time-consuming during the implantation process, suturing provides the implanting surgeon with the degree of flexibility necessary to produce the best possible results with the implanted medical device. Still, the act of positioning the various sutures utilized in connection with conventional implantation techniques is rather time-consuming. In each case the surgeon must determine a suturing position within the implant material itself and then pass the suturing thread therethrough prior to attaching to pelvic structures, e.g., bony structure or stitching the sutures to softer tissue structures.
Accordingly, a need remains in the art for technologies and designs that can reduce the damage and stretching worn into implanted medical devices by sutures and surgical fastening devices, thereby increasing their functional longevity. A related need exists for technologies and designs that can simplify and facilitate the implantation of these devices.
SUMMARY OF THE INVENTION
These and other objects are achieved by the various apparatus and associated methods of the present invention.
In a broad aspect, the present invention provides novel apparatus that can be added or affixed to existing medical implants or incorporated into their original designs which will increase their functional longevity by distributing normal suture and medical fastener stresses throughout larger structural areas of the medical implants, reducing knifing and subsequent distortion. Utilization of these same devices also facilitates implantation of the medical implants by providing the implanting surgeon with readily identifiable guides, which both tactilely and visually direct the surgeon to the surgical fastener locations that are themselves easy to manipulate and employ during the surgical implantation procedure.
More specifically, the present invention provides readily adaptable apparatus for enhancing the functional longevity and for facilitating the implantation of medical devices through the provision of one or more reinforcing fastener guides fixed upon incorporated into the outer surfaces of the medical devices. Much like a curb or resistive barrier, the reinforcing fastener guides of the present invention provide a stable anchor to the medical implants themselves for the attaching sutures or other surgical attaching fasteners utilized to position the implants. In this manner, the reinforcing fastener guides provide a structural enhancement affixed to the medical implant that distributes compresses and tensile loads imparted into the implant by the surgical fasteners.
Moreover, at the same time, the reinforcing fastener guides of the present invention can be formed in a wide variety of shapes ranging from simple bars, arcs, and crescents to complete circles and polygons defining generally centrally located surgical fastener apertures within each. These novel reinforcing guides not only clearly define a readily discernible suture or fastening location within the implants, but also provide the implanting surgeon with both a visual and tactile indicato

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and methods for enhancing the functional longevity... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and methods for enhancing the functional longevity..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and methods for enhancing the functional longevity... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3139840

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.