Surgery – Respiratory method or device – Means for mixing treating agent with respiratory gas
Reexamination Certificate
2000-05-30
2003-04-08
Lewis, Aaron J. (Department: 3761)
Surgery
Respiratory method or device
Means for mixing treating agent with respiratory gas
C128S203210
Reexamination Certificate
active
06543448
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to methods and apparatus for the pulmonary delivery of drugs. More particularly, the present invention relates to a method and apparatus for dispersing dry powder medicaments for inhalation by a patient.
Effective delivery to a patient is a critical aspect of any successful drug therapy. Various routes of delivery exist, and each has its own advantages and disadvantages. Oral drug delivery of pills, capsules, elixirs, and the like, is perhaps the most convenient method, but many drugs are degraded in the digestive tract before they can be absorbed. Such degradation is a particular problem with modern protein drugs which are rapidly degraded by proteolytic enzymes in the digestive tract. Subcutaneous injection is frequently an effective route for systemic drug delivery, including the delivery of proteins, but enjoys a low patient acceptance. Since injection of drugs, such as insulin, one or more times a day can frequently be a source of poor patient compliance, a variety of alternative routes of administration have also been developed, including transdermal, intranasal, intrarectal, intravaginal, and pulmonary delivery.
Of particular interest to the present invention, pulmonary drug delivery relies on inhalation of a drug dispersion or aerosol by the patient so that active drug within the dispersion can reach the distal (alveolar) regions of the lung. It has been found that certain drugs are readily absorbed through the alveolar region directly into blood circulation. Pulmonary delivery is particularly promising for the delivery of proteins and polypeptides which are difficult to deliver by other routes of administration. Such pulmonary delivery is effective both for systemic delivery and for localized delivery to treat diseases of the lungs.
Pulmonary drug delivery (including both systemic and local) can itself be achieved by different approaches, including liquid nebulizers, metered dose inhalers (MDI's) and dry powder dispersion devices. Dry powder dispersion devices are particularly promising for delivering protein and polypeptide drugs which may be readily formulated as dry powders. Many otherwise labile proteins and polypeptides may be stably stored as lyophilized or spray-dried powders by themselves or in combination with suitable powder carriers. The ability to deliver proteins and polypeptides as dry powders, however, is problematic in certain respects. The dosage of many protein and polypeptide drugs is often critical so it is necessary that any dry powder delivery system be able to accurately, and precisely (repeatedly) deliver the intended amount of drug. Moreover, many proteins and polypeptides are quite expensive, typically being many times more costly than conventional drugs on a per-dose basis. Thus, the ability to efficiently deliver the dry powders to the target region of the lung with a minimal loss of drug is critical. It is further desirable that powder agglomerates present in the dry powder be sufficiently broken up prior to inhalation by the patient to assure effective systemic absorption or other pulmonary delivery.
A particularly promising approach for the pulmonary delivery of dry powder drugs utilizes a hand-held device with a pump or other source of pressurized gas. A selected amount of the pressurized gas is abruptly released through a powder dispersion device, such as a Venturi tube, and the dispersed powder made available for patient inhalation. While advantageous in many respects, such hand-held devices are problematic in a number of other respects. The particles being delivered are very fine, usually being sized in the range from 1 &mgr;m to 5 &mgr;m, making powder handling and dispersion difficult. The problems are exacerbated by the relatively small volumes of pressurized gas, typically 2 ml to 25 ml at 20 to 150 psig, which are available in such devices. In particular, Venturi tube dispersion devices are unsuitable for difficult-to-disperse powders when only small volumes of pressurized gas are available. Moreover, Venturi tube dispersion devices have very small powder inlet orifices which are easily plugged by the powders used for pulmonary delivery. Another requirement for hand-held and other powder delivery devices is high dosage concentration. It is important that the concentration of drug in the bolus of gas be relatively high to reduce the number of breaths and/or volume of each breath required to achieve a total dosage. The ability to achieve both adequate dispersion and small dispersed volumes is a significant technical challenge.
It would therefore be desirable to provide methods and systems for the dispersion of dry powder protein, polypeptide, and other drugs which meet some or all of the above objectives.
2. Description of the Background Art
Dry powder dispersion devices for medicaments are described in a number of patent documents. U.S. Pat. Nos. 3,921,637 describes a manual pump with needles for piercing through a single capsule of powdered medicine. The use of multiple receptacle disks or strips of medication is described in EP 467172 (where a reciprocatable piercing mechanism is used to piercing mechanism through opposed surfaces of a blister pack); WO91/02558; WO93/09832; WO94/08522; U.S. Pat. Nos. 4,627,432; 4,811,731; 5,035,237; 5,048,514; 4,446,862; and 3,425,600. Other patents which show puncturing of single medication capsules include U.S. Pat. Nos. 4,338,931; 3,991,761; 4,249,526; 4,069,819; 4,995,385; 4,889,114; and 4,884,565; and EP 469814. WO90/07351 describes a hand-held pump device with a loose powder reservoir.
A dry powder sonic velocity disperser intended for industrial uses and very high flow rates is described in Witham and Gates,
Dry Dispersion with Sonic Velocity Nozzles,
presented at the Workshop on Dissemination Techniques for Smoke and Obscurants, Chemical Systems Laboratory, Aberdeen Proving Ground, Md., Mar. 14-16, 1983.
A pneumatic powder ejector having a suction stage and an injection stage is described in U.S. Pat. No. 4,807,814. The device comprises an axial gas Venturi tube and a lateral powder inlet.
Pittman and Mason (1986), Solids Handling Conference, Paper C4, pages C-41 to C-51, describes an ejector nozzle (FIG. 2) having an annular air inlet upstream of a venturi restriction.
SU 628930 (Abstract) describes a hand-held powder disperser having an axial air flow tube.
SU 1003926 (Abstract) describes a gas thermal coating injector.
Bubrik and Zhelonkina (1978), “Ejector Feeders for Pneumatic Transport Systems,” in
Chemical and Petroleum Engineering,
Consultants Bureau, New York, describes differing efficiencies in several ejector designs.
Zholab and Koval (1979), Poroshkovaya Metallurgiya 6:13-16, describes effects of injector design on particle size.
Bohnet (1984) “Calculation and Design of Gas/Solid-Injectors,” in
Powder Technology,
pages 302-313, discusses conventional injector design.
Fox and Westawag (1988) Powder and Bulk Engineering, March 1988, pages 33-36, describes a venturi eductor having an axial air inlet tube upstream of a venturi restriction.
NL 7712041 (Abstract) discloses an ejector pump which creates suction and draws powder into a separator.
EP 347 779 describes a hand-held powder disperser having a collapsible expansion chamber.
EP 490 797 describes a hand-held powder disperser having a spring-loaded piston, where the piston carries a dispersion nozzle.
U.S. Pat. No. 3,994,421, describes a hand-held powder disperser having a collapsible deceleration chamber.
Pulmonary drug delivery is described in Byron and Patton (1994) J. Aerosol Med. 7:49-75.
SUMMARY OF THE INVENTION
The present invention provides methods and apparatus for efficient pulmonary delivery of accurate, precise, and repeatable dosages of powdered medicaments. The present invention will be particularly useful for the delivery of costly biopharmaceuticals such as protein, polypeptide and polynucleic acid drugs, but will also be useful for the systemic or localized delivery of any powdered medicament through the
Anthony Jack M.
Axford George S.
Burr John D.
Etter Jeffrey W.
Smith Adrian E.
Cagan Felissa H.
Inhale Therapeutic Systems Inc.
Lewis Aaron J.
Mitchell Teena
Tucker Guy V.
LandOfFree
Apparatus and methods for dispersing dry powder medicaments does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus and methods for dispersing dry powder medicaments, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and methods for dispersing dry powder medicaments will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3058619