Electrical generator or motor structure – Non-dynamoelectric – Piezoelectric elements and devices
Reexamination Certificate
1998-04-24
2001-01-30
Budd, Mark O. (Department: 2834)
Electrical generator or motor structure
Non-dynamoelectric
Piezoelectric elements and devices
C310S317000
Reexamination Certificate
active
06181051
ABSTRACT:
FIELD OF THE INVENTION
The invention relates to systems and methods for cleaning and/or processing delicate parts, e.g., semiconductor wafers. In particular, the invention relates to ultrasonic systems, ultrasonic generators, ultrasonic transducers, and methods which support or enhance the application of ultrasonic energy within liquid.
BACKGROUND OF THE INVENTION
Ultrasonic energy has many uses; and applications of ultrasound are widespread in medicine, in the military industrial complex, and in engineering. One use of ultrasound in modern manufacturing and processing is to process and/or clean objects within liquids. For example, it is well-known that objects within an aqueous solution such as water can be cleaned by applying ultrasonic energy to the water. Typical ultrasound transducers are, for example, made from materials such as piezoelectrics, ceramics, or magnetostrictives (aluminum and iron alloys or nickel and iron alloys) which oscillate with the frequency of the applied voltage or current. These transducers transmit ultrasound into a tank filled with liquid that also covers some or all of the object to be cleaned or processed. By driving the transducer at its operational resonant frequency, e.g., 18 khz, 25 khz, 40 khz, 670 khz or 1 Mhz, the transducer imparts ultrasonic energy to the liquid and, hence, to the object. The interaction between the energized liquid and the object create the desired cleaning or processing action.
By way of example, in the 1970s ultrasonic energy was used in liquid processing tanks and liquid cleaning tanks to enhance the manufacture of semiconductor devices and other delicate items. The typical ultrasonic frequency of such processes was a single frequency between 25 khz to 50 khz. Many prior art generators exist which produce single frequency ultrasonics, including those described in U.S. Pat. Nos. 3,152,295; 3,293,456; 3,629,726; 3,638,087; 3,648,188; 3,651,352; 3,727,112; 3,842,340; 4,044,297; 4,054,848; 4,069,444; 4,081,706; 4,109,174; 4,141,608; 4,156,157; 4,175,242; 4,275,363; and 4,418,297.
The early ultrasonic transducers were typically piezoelectric ceramics that were “clamped,” i.e., compressed, so as to operate at their fundamental resonant or anti-resonant frequency. Many prior art clamped transducers exist, including those found in U.S. Pat. Nos. 3,066,232; 3,094,314; 3,113,761; 3,187,207; 3,230,403; 3,778,758; 3,804,329 and RE 25,433. Other ultrasound transducers are made of alloys that possess magnetostriction properties which cause them to expand or contract under the influence of a magnetic field.
As mentioned above, these transducers were bonded to or placed in tanks which housed the cleaning or processing liquid. Typically, such tanks were constructed of a material compatible with the processing liquid, such as: 316L stainless steel for most aqueous chemistries; 304 stainless steel for many solvents; plastics such as Teflon, polypropylene, and metals such as tantalum for strong acids; and coated metals such as Teflon-coated stainless steel for corrosive liquids.
In order to deliver ultrasound to the solution within the tank, the transducers were attached to, or made integral with, the tank. In one method, for example, epoxy bonds or brazing were used to attach the transducers to tanks made of metallic stainless steel, tantalum, titanium, or Hastalloy. In another prior art method, the drive elements of the transducers were machined or cast into the tank material, and the piezoelectric ceramic and backplates were assembled to the drive elements.
The prior art also provides systems which utilize ultrasonic transducers in conjunction with plastic tanks. Typically, the tank's plastic surface was etched to create a surface that facilitated an epoxy bond thereon. The transducers were bonded with epoxy to the etched surface, and various techniques were used to keep the system cool to protect the plastic from deterioration. One such technique was to bond the transducers to an aluminum plate that would act as a heat-sink, and then to bond the aluminum plate to the plastic surface. Often, fans would be directed toward the aluminum plate and the transducers so as to enhance cooling. Another cooling technique utilized a thin plastic, or a process of machining the plastic at the transducer bonding position, to provide a thin wall at the transducer mounting position. This technique enhanced the cooling of the plastic and transducer by improved heat conduction into the liquid, and further improved the coupling of sound into the processing liquid because of less sound absorption.
With advances in plastic formulations such as PEEK (polyetheretherketone), the prior art made improvements to the plastic ultrasonic tank by further reducing the sound absorption within the plastic material. The prior art further developed techniques for molding the transducers into the plastic material, such as through injection and rotational molding, which further improved the manufacturing of the tank as well as the processing characteristics within the tank.
For other materials such as ceramics, glass, Pyrex and quartz, the prior art used epoxy to bond the transducer to the tank surface. Casting the transducer into the material was also possible, but was not commercially used. Often, the radiating surface (i.e., the surface(s) with the ultrasonic transducers mounted thereon or therein), usually the tank bottom, would be pitched by at lease one-quarter wavelength to upset standing wave patterns within the tank. Other tank configurations which provided similar advantages are reported in the prior art, such as disclosed by Javorik in U.S. Pat. No. 4,836,684.
An alternative to bonding the transducer directly to the bottom or sides of the tank was developed in the prior art by bonding the transducer to a window or plate that was sealed within a tank opening via a gasket. This had several advantages. If the transducer failed, or if cavitation erosion occurred within the radiating surface, the window or plate could be replaced without the expense of replacing the whole tank. Another advantage was the ability to use dissimilar materials. For example, a quartz tank with a tantalum window offered the advantage of an acid resistant material for the tank, and a metallic bonding and radiating surface for the transducer. In U.S. Pat. No. 4,118,649, Schwartzman described the use of a tantalum window with bonded transducers which coupled ultrasonic energy into a semiconductor wafer process tank.
A second alternative to direct bonding between the transducers and the tank was developed, in the prior art, by bonding the transducers inside a sealed container, called an “immersible” or “submersible,” which was placed under the liquid in the process or cleaning tank. Certain advantages were also presented in this method, including (a) the relatively inexpensive replacement of the container, and (b) the use of dissimilar materials, described above. In U.S. Pat. No. 3,318,578, Branson discloses one such immersible where both the transducers and the generator are sealed in the container.
There are, however, certain disadvantages associated with above-described alternatives to direct bonding between the transducers and the tank. One such disadvantage is the occasional entrapment of contamination within the area of the window, or the window gasket, or under the immersible. When contamination-free processing is required, a direct bonded coved corner tank provides a better solution.
Although tanks, plates, windows and immersibles usually had clamped transducers bonded thereon, the prior art sometimes utilized an unclamped piezoelectric shape or an array of unclamped piezoelectric shapes, such as PZT-4 or PZT-8, which were bonded directly to the tank, plate, window or immersible. By way of example, U.S. Pat. No. 4,118,649 describes transducers shaped into hexagons, rectangles, circles, and squares and bonded to a window. These unclamped transducers had the advantage of lower cost. They further could be operated in either the radial mode, for low frequency resonance, or in the l
Budd Mark O.
McDermott & Will & Emery
LandOfFree
Apparatus and methods for cleaning and/or processing... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus and methods for cleaning and/or processing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and methods for cleaning and/or processing... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2498472