Surgery – Radioactive substance applied to body for therapy – Radioactive substance placed within body
Reexamination Certificate
1996-09-26
2001-04-17
Lacyk, John P. (Department: 3311)
Surgery
Radioactive substance applied to body for therapy
Radioactive substance placed within body
C600S001000, C600S002000, C600S004000, C600S005000, C600S006000, C600S007000, C600S008000
Reexamination Certificate
active
06217503
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus and a method to treat a disease process in a luminal structure. Such a structure includes, but is not limited to, veins, arteries, bypass graft prostheses, the gastrointestinal (GI) tract, the biliary tract, the genitourinary (GU) tract, and the respiratory tract (e.g. the tracheobronchial tree).
Within this application several publications are referenced by Arabic numerals within parentheses. Full citations for these references may be found at the end of the specification immediately preceding the claims. The disclosures of all of these publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this invention pertains.
Percutaneous transluminal coronary angioplasty (“PCTA”) is commonly used in the treatment of coronary artery obstruction, with over 400,000 procedures performed annually. The process involves the insertion of balloon catheters through the femoral artery to the targeted coronary artery. Injection of radio-opaque contrast into the proximal coronary artery allows fluoroscopic localization of stenosed coronary segments. Balloon catheters are advanced to the site of stenosis over extremely thin guide wires to position the catheter at the point of occlusion. The distal end of the catheter contains a balloon which is inflated for 2-4 minutes to the full diameter of the occluded artery, decreasing the blockage and improving blood flow.
Approximately 40% of patients undergoing this procedure have angiographic evidence of restenosis by 12 months. The biological processes responsible for restenosis are not fully understood, but appear to result from abnormal proliferation of the “insulted” smooth muscle cells and neointima formation in the segment of treated artery (6). Although coronary artery blockage is a non-malignant disease, it has been suggested that treatment of the internal vessel walls with ionizing radiation could inhibit cell growth, and delay or even prevent restenosis (4, 7, 10-13).
As stated above, restenosis after arterial intervention in general, PTCA in particular, seem to be primarily due to medial smooth muscle cell proliferation. Conventional PTCA is performed using a balloon catheter such an over-the-wire type catheter manufactured, for example, by Scimed Life Systems, Inc, of Maple Grove, Minn. or a mono-rail type catheter manufactured, for example, by Advanced Cardiovascular Systems, Inc, of Temecula, Calif.
FIG. 1
depicts such a conventional over-the-wire balloon catheter
1
. The conventional balloon catheter
1
is utilized in an angioplasty procedure as follows. A conventional guidewire
2
is inserted into the patient's artery until the distal end of the guidewire
2
is past a target area (not shown) of the artery (not shown) where there is a buildup of material. The conventional balloon catheter
1
has a lumen
3
running therethrough. The guidewire
2
is inserted into the distal end of the balloon catheter
1
and the balloon catheter
1
is advanced over the guidewire until the balloon section
1
a
of the balloon catheter
1
is adjacent the buildup of material. The balloon section
1
a
is then inflated by an inflation means (not show) connected to an inflation port
1
b
to clear the artery. Finally, the balloon section
1
a
is deflated, the balloon catheter
1
is pulled back up the guidewire and removed and the guidewire is likewise removed from the patient's artery.
Current technology contemplates two distinct design classes for devices for the prevention of restenosis after arterial interventions. The first design class, an arterial stent type device, is designed for long term deployment within the artery. Such a stent, if designed to emit radiation, would be in place long after the time necessary for the prevention of smooth muscle cell proliferation at the arterial site. U.S. Pat. No. 5,059,166 to Fischell describes such a long term stent.
The second design class for restenosis preventing devices contemplates the delivery of unspecified doses of radiation via radioactive catheters and guidewires. These devices utilize a movable, flexible radiation shield. However, it is questionable whether such a radiation shield could be constructed given the thickness of material required to shield the radiation source and the flexibility required to allow delivery of the radiation source and shield to the coronary site. U.S. Pat. No. 5,213,561 to Weinstein relates to a device of this class.
In addition, neither class of devices addresses the need to isolate the radioactive source from contact with the patient's body fluids.
In a related area, brachytherapy involves the placement of a radioactive source within tissue to deliver localized radiation and is frequently applied to treat recurrent disease in an area previously treated by external beam radiation. Blind-end catheters may be used to deliver radiation to tumors in the esophagus, trachea, or rectum, for example. Advantages include the sparing of critical structures close to the tumor, and brevity of treatment (hours to days). Difficulties primarily involve anatomic constrains on implant placement. Common applications include the endoluminal treatment of recurrent endobronchial and bile duct tumors, the intracavitary treatment of cervical and endometrial cancer, and interstitial implants in unrespectable tumors with catheters or radioactive seeds.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide an arrangement for reducing restenosis after arterial or vascular intervention in a patient. Such intervention includes, but is not limited to, balloon angioplasty, atherectomy, stent placement, arterial grafts, and arteriovenous fistula.
Moreover, it is noted that long term hemodialysis therapy is complicated by thrombosis of both hemodialysis grafts and native shunts. Late graft failure (after about 6 weeks) is commonly associated with anatomic stenosis at the venous anastomosis, within the graft, or more proximally in the central venous system. Irradiation of the proliferative tissue from an intravascular source will inhibit the development of shunt outflow stenosis and thus decrease the incidence of thrombosis from the ensuing low flow state. Any proliferative tissue at the site of a vascular graft would also be amenable to this treatment.
It is a further object of the present invention to provide an arrangement for reducing restenosis after vascular intervention in the patient by delivering a precise dosage of radiation to the patient's artery at a target area.
It is a further object of the present invention to provide an arrangement for reducing restenosis after vascular intervention in the patient by delivering precise radioactive dosage to the patient's artery at a target area while eliminating contact between the radioactive source and the patient's body fluids.
It is a further object of the present invention to provide an arrangement for reducing restenosis after vascular intervention in the patient by delivering a precise radioactive dosage to the patient's artery at a target area while shielding a doctor and other staff from over-exposure to radiation.
It is another object of the present invention to provide an arrangement and method for treating a disease process or processes in a luminal structure or structures. Such structure or structures include, but are not limited to, veins, arteries, bypass graft prostheses, the gastrointestinal (GI) tract, the biliary tract, the genitourinary (GU) tract, and the respiratory tract (e.g. the tracheobronchial tree). The diseases to be treated by the invention include proliferative diseases (both malignant and non-malignant).
According to one aspect of the present invention, an apparatus guided by a guidewire within a patient's artery for reducing restenosis after arterial intervention in the patient's artery is provided, comprising a radiation dose delivery wire with a radiation source encapsulated withi
Amols Howard I.
Weinberger Judah Z.
Cooper & Dunham LLP
Lacyk John P.
The Trustees of Columbia University in the City of New York
White John P.
LandOfFree
Apparatus and method to treat a disease process in a luminal... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus and method to treat a disease process in a luminal..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method to treat a disease process in a luminal... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2455927