Apparatus and method testing a biological fluid

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C422S051000, C220S203080

Reexamination Certificate

active

06660469

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to an apparatus and method of testing a biological fluid.
It is known to test milk produced by dairy cows and other mammals to determine whether the animal is suffering from mastitis. For example, laboratory testing of milk samples taken by milk collection operatives is regularly carried out.
Known such tests involve either determining the number of bacteria cells in the sample for a direct indication of the presence of mastitis, or determining the number of somatic cells, e.g. tissue, blood or other cells, in the sample to provide an indirect indication of the presence of mastitis in the animal. This latter test relies on the fact that in an animal with an infection such as mastitis white blood cells (leukocytes) produced by the animal's immune system will be transferred into the animal's milk to combat the pathogens. So a high level of somatic cells in the sample will indicate that an infection is present in the animal.
A problem with known laboratory based testing is that there is inevitably a delay between when the sample is taken and when the test results are available. Mastitis can progress rapidly and so the test results may not be accurately indicative of the state of the disease when for example the animal is next milked. Also a laboratory based test on a sample taken by a collection operative (tanker driver), is most likely to include milk produced by a plurality of animals. Thus such tests, whilst being of some use in determining milk quality from a particular farm, are not useful in advising a dairyman for example, as to which of his animals is suffering from mastitis.
Thus a dairyman needs to be able to perform tests on individual animals which will give a rapid result, so that the dairyman can be alerted to an animal which is suffering from mastitis. In response, the dairyman may decide to dispose of an individual animal's milk so as not to lower the quality of milk from the herd, and may make a decision either to treat the animal e.g. with antibiotics, or to allow the animal's own immune system to combat the infection.
In each case, early diagnosis of mastitis is important to enable the dairyman proactively to maintain the quality of the herd's milk provided for production, and to provide for timely, appropriate treatment of individual animals in the herd.
Milk tests are known which are intended to be performed by a dairyman, which are known as the Californian Mastitis Test (CMT) and the conductivity test. However to perform such tests, the tester needs to make subjective judgements which a dairyman may not be sufficiently skilled to make. Also such tests exhibit a lack of sensitivity for detecting subclinical mastitis, and the CMT lacks accuracy at somatic cell count levels required by current rules and regulations. Such tests do not readily lend themselves to use in the context of a cowshed where cows may be milked.
Portable biological fluid testing kits are known, for example from U.S. Pat. No. 5,827,675 but these are complex to use and do not lend themselves readily for use by say, a dairyman, in the field.
SUMMARY OF THE INVENTION
According to one aspect of the invention we provide an apparatus for testing a biological sample from an animal for the presence of disease in the animal, the apparatus including a container, a dipstick and a luminometer, an end of the dipstick being adapted to be inserted into the sample so that a predetermined amount of the sample becomes attached to the dipstick and takes part in a reaction in the container which produces light emissions, the luminometer being adapted to receive the container and to be operated whereby a determination of the level of bacteria and/or somatic cells in the sample and hence of the disease in the animal is made, by sensing light emissions from the container.
The invention has been primarily but not exclusively developed for use in testing raw milk.
Thus utilising an apparatus in accordance with the invention, milk from an individual milk producing animal can be tested by, for example, a dairyman as soon as or soon after the milk is produced, simply, and because the luminometer is capable of measuring light emissions from the container, testing does not rely on subjective determinations.
In order that a luminometer may be used, it is essential that the milk or other fluid attached to the dipstick reacts with an agent on the dipstick and/or the reagent in the container to create a light producing reaction. The amount of light produced preferably is determined by the number of somatic cells in the milk attached to the dipstick whereby the test is an indirect test, i.e. the presence of disease in the animal is indicated by the number of somatic cells in the sample rather than the number of bacterial cells in the sample. However the invention may be applied to direct testing methods which test for bacterial cells in the sample, using a suitable reagent.
Preferably the container contains an extractant and the contents of the somatic cells in the milk or other fluid attached to the dipstick is released on contact with the extractant. The extractant may be contained in a chamber of the container prior to testing and the end of the dipstick may be supported in the container out of contact with the extractant until testing is performed. For example, a chamber may be provided in the container between a closed end of the container and a membrane within the container, and the membrane may be ruptured to enable the milk or other fluid attached to the dipstick, and the extractant, to be brought into contact during testing. The membrane may be of plastic, or a metal or a combination of these such as for example only, metalized Mylar.
The dipstick may be moveable within the container from a position in which the dipstick is supported out of contact with the membrane, and a position in which the end of the dipstick is in contact with the extractant, such movement rupturing the membrane.
In one arrangement the dipstick may be supported by a cap which closes an open end of the container until removed, the cap including a frangible connection which is broken to enable the dipstick to move within the container to rupture the membrane. Thus the dipstick and the container are adapted for single use.
The cap of the container may include indicia means so that the container can be uniquely identified and readily indexed with an animal which produces the milk or other biological fluid sample. In one arrangement, such indicia means may include one or more wings on which information may be provided e.g. by writing.
The container is preferably tubular, but preferably is of a non-circular cross section and is receivable in a corresponding non-circular opening of the luminometer so that the container is constrained to a desired orientation in the opening e.g. to maximise light collection from the container.
The extractant may typically be a lysate, which ruptures the somatic cells in the fluid, on contact. Thus to facilitate the reaction, preferably the dipstick includes a reagent such as an enzyme to react with cellular components in the milk or other biological sample.
The dipstick most conveniently is made of a plastic material. To prevent neutralisation of the enzyme or other reagent carried on the dipstick by the material from which the dipstick is made, preferably a barrier is provided betwveen the agent and the material of the dipstick. In one arrangement, the agent may be carried on an absorbent pad which is adhered or otherwise secured to the dipstick. One such pad is an absorbent fabric pad made of cottonor other natural fibres for examples. Such a pad may be configured to absorb a known amount of milk or other fluid, so that a known amount of fluid is used in the test. The dipstick may be configured to encourage excess fluid not to attach to the dipstick. For example the end of the dipstick may be pointed.
One suitable reagent is firefly luciferin together with the enzyme luciferase.
The luminometer may be configured to count all photons emitted

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method testing a biological fluid does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method testing a biological fluid, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method testing a biological fluid will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3108690

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.