Metal founding – Means to shape metallic material – Pressure shaping means
Reexamination Certificate
2001-09-17
2003-02-04
Dunn, Tom (Department: 1725)
Metal founding
Means to shape metallic material
Pressure shaping means
C164S319000, C164S288000, C164S339000, C164S332000
Reexamination Certificate
active
06513570
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to pressure casting of battery terminals and, more specifically to pressure casting of lead and lead alloy battery terminals to inhibit the formation of cracks and tears during and after the solidification of the battery terminal.
BACKGROUND OF THE INVENTION
Battery parts such as terminals, which are typically made of lead or a lead alloy, are usually cold formed in order to produce a battery terminal that is free of voids and cracks. If lead or lead alloy battery terminals are pressure cast, air is left in the battery terminal cavity in the mold so that as the lead solidifies, the air bubbles prevent the battery terminal from crackdng. That is, the air bubbles act as fillers so the lead remains distributed in a relatively uniform manner throughout the battery terminal. Unfortunately, air bubbles within the battery terminals cause the battery terminals to be rejects as the air bubbles can produce large voids in the battery terminal. In order to minimize the air bubbles in the battery terminal, a vacuum can be drawn in the battery terminal cavity mold; however, although the vacuum removes air from the mold and inhibits the forming of air bubbles in the battery terminal, the battery terminals cast with a vacuum in the battery terminal cavity oftentimes solidify in an uneven manner producing battery terminals with cracks or tears which make the battery terminals unacceptable for use. The present invention provides a method of forming a battery part during a pressure casting part through volume shrinkage of the mold during various phases of the solidification process.
In one embodiment of the invention, a battery terminal is cast which is substantially fee of cracks and tears by pressure casting a lead alloy while a vacuum is being applied to the battery terminal cavity. At the moment when the lead in the battery terminal cavity reaches the liquid-to-solid transformation stage, a piston is driven into the mold to rapidly reduce the volume of the mold for solidification. By precisely controlling the time of application of an external compression force to the molten lead in the battery terminal cavity, and consequently, the time at which the volume of the battery terminal cavity is reduced, one can force the molten lead or lead alloy in the flowable state into a smaller volume where the pressure on the battery terminal cavity is maintained. By maintaining the pressure on the battery terminal cavity during the solidification process, the battery terminal can be cast in a form that is free of cracks and tears.
In another embodiment of the invention, the mold for forming the pressure cast battery part is sealed off while the molten lead is still in the molten state and before the molten lead can begin to solidify the supply of pressurized lead is shut off and at the same time the internal pressure of the molten lead is increased by driving a piston into the molten metal. This process is suited for those applications where the entire mold can withstand the higher pressures. That is, when the liquid metal is in a molten state an increase in pressure of the molten lead throughout the mold and the maintaining of the increased pressure during solidification can produce a battery part free of tears and cracks. This process allows one to obtain greater molding pressure than is available with conventional pressure casting techniques.
In another embodiment of the invention, the cast battery part is subjected to at least a partial cold forming during the volume contraction step by rapidly driving a piston into the solidified cast battery part with sufficient force to cold form a portion of the lead in the battery part to thereby produce a battery part that is free of cracks and tears. This method is more suitable for those battery parts where one does not want to subject the mold to excessively higher pressures than the die casting pressures.
SUMMARY OF THE INVENTION
Briefly, the system comprises an apparatus and method for pressure casting a battery terminal wherein the state of molten lead is monitored so that when the molten lead enters a transformation stage from liquid-to-solid, the volume of the mold available for the lead to solidify therein is quickly reduced to thereby cause the molten lead to flow into the remaining volume while one maintain pressures on the molten lead. As the molten lead solidifies under the reduced volume and pressure, it produces a battery terminal that is substantially free of both tears and cracks. In another embodiment of the pressure casting of a battery terminal, the battery terminal is allowed to solidify in the molds but before removal of the battery terminal from the mold a piston is driven into the battery terminal with sufficient force so as to at least partially cold form a portion of the battery terminal to thereby produce a battery terminal that is free of cracks and tears. In a further embodiment of the invention the mold is sealed off while the molten lead is in a molten state and the pressure of the molten lead is increased and maintained until the molten lead solidifies.
REFERENCES:
patent: 6202733 (2001-03-01), Ratte
patent: 6363996 (2002-04-01), Ratte
Dunn Tom
Jacobson & Johnson
Lin I.-H.
Water Gremlin Company
LandOfFree
Apparatus and method of forming battery parts does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Apparatus and method of forming battery parts, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method of forming battery parts will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3159225